Limits of the Reactive Simulatability/UC of Dolev-Yao Models with Hashes (revised version)

Automated tools such as model checkers and theorem provers for the analysis of security protocols typically abstract from cryptography by Dolev-Yao models, i.e., abstract term algebras replace the real cryptographic operations. Recently it was shown that in essence this approach is cryptographically sound for certain operations like signing and encryption. The strongest results show this in the sense of blackbox reactive simulatability (BRSIM)/UC with only small changes to both Dolev-Yao models and natural implementations. This notion essentially means the preservation of arbitrary security properties under active attacks in arbitrary protocol environments.
We show that it is impossible to extend the strong BRSIM/UC results to usual Dolev-Yao models of hash functions in the general case. These models treat hash functions as free operators of the term algebra. In contrast, we show that these models are sound in the same strict sense in the random oracle model of cryptography. For the standard model of cryptography, we also discuss several conceivable restrictions to the Dolev-Yao models and classify them into possible and impossible cases.

(Revised version: February 2006).

By: Michael Backes; Birgit Pfitzmann; Michael Waidner

Published in: RZ3607 in 2005


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .