Monolithic Integration of III-V on Si Applied to Lasing Micro-Cavities: Insights from STEM and EDX

Due to their high mobility and direct band gap, III-V materials promise good prospects of obtaining novel, high-performance devices for electronic and photonic applications. In this paper, two variants of the established Template Assisted Selective Epitaxy (TASE) technique [2-4] are explored to study the structural quality of GaAs and InGaAs microcavities monolithically integrated on Si (001). The first variant involves a one-step direct cavity growth (DCG), while the second relies on a two-step virtual substrate (VS) growth approach. The cavities obtained were investigated by Scanning Transmission Electron Microscopy (STEM) and Energy
Dispersive X-Ray Spectroscopy (EDX); the findings have been correlated with the photoluminescence properties of the cavities. Both approaches enable monolithic integration of GaAs crystalline material in predefined oxide microcavities. In some cases, they allow the III-V materials to be grown as a single gain and do not lead to noticeable structural defects. InGaAs disks and ring cavities grown using the VS approach have also been investigated. Despite the presence of planar defects and rough surfaces, lasing could be achieved at low temperature.

By: M. Sousa, S. Mauthe, B. Mayer, S Wirths, H. Schmid, K.E. Moselund

Published in: 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO) , IEEE, p.10.1109/NANO.2018.8626223 in 2018

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

RZ3934.pdf

Questions about this service can be mailed to reports@us.ibm.com .