Robust-to-Dynamics Linear Programming

We consider a class of robust optimization problems that we call “robust-to-dynamics optimization” (RDO). The input to an RDO problem is twofold: (i) a mathematical program (e.g., an LP, SDP, IP, etc.), and (ii) a dynamical system (e.g., a linear, nonlinear, discrete, or continuous dynamics). The objective is to maximize over the set of initial conditions that forever remain feasible under the dynamics. The focus of this paper is on the case where the optimization problem is a linear program and the dynamics are linear. We establish some structural properties of the feasible set and prove that if the linear system is asymptotically stable, then the RDO problem can be solved in polynomial time. We also outline a semidefinite programming based algorithm for providing upper bounds on robust-to-dynamics linear programs.

By: Amir Ali Ahmad, Oktay Günlük

Published in: 2015 54th IEEE Conference on Decision and Control (CDC). ProceedingsPiscataway, NJ,IEEE,, p.5915-19 in 2015


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .