TimeBank-Driven TimeML Analysis

The design of TimeML as an expressive language for temporal information brings promises, and challenges; in particular, its representational properties raise the bar for traditional information extraction methods applied to the task of text-to-TimeML analysis. A reference corpus, such as TimeBank, is an invaluable asset in this situation; however, certain characteristics of TimeBank---size and consistency, primarily---present challenges of their own. We discuss the design, implementation, and performance of an automatic TimeML-compliant annotator, trained on TimeBank, and deploying a hybrid analytical strategy of mixing aggressive finite-state processing over linguistic annotations with a state-of-the-art machine learning technique capable of leveraging large amounts of unannotated data. The results we report are encouraging in the light of a close analysis of TimeBank; at the same time they are indicative of the need for more infrastructure work, especially in the direction of creating a larger and more robust reference corpus.

By: Branimir K. Boguraev; Rie Ando

Published in: RC23649 in 2005


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to reports@us.ibm.com .