Computing Slater Rankings Using Similarities Among Candidates

Voting (or rank aggregation) is a general method for aggregating the preferences of multiple agents. The Slater rule is an important voting rule. It selects a ranking of the candidates to minimize the number of pairs of candidates such that the ranking disagrees with the pairwise majority vote on these two candidates. The use of the Slater rule has been hindered by a lack of techniques to compute Slater rankings. In this paper, we show how we can decompose the Slater problem into smaller subproblems if there is a set of similar candidates. We show that this technique suffices to compute a Slater ranking in linear time if the pairwise majority graph is hierarchically structured. For the general case, we also give an efficient algorithm for finding a set of similar candidates. We provide experimental results that show that this technique significantly (sometimes drastically) speeds up search algorithms. Finally, we also use the technique of similar sets to show that computing an optimal Slater ranking is NP-hard, even in the absence of pairwise ties.

By: Vincent Conitzer

Published in: RC23748 in 2005


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .