A Randomized Asynchronous Linear Solver with Provable Convergence Rate

Asynchronous methods for solving systems of linear equations have been researched since Chazan and Miranker published their pioneering paper on chaotic relaxation in 1969. The underlying idea of asynchronous methods is to avoid processor idle time by allowing the processors to continue to work and make progress even if not all progress made by other processors has been communicated to them.

Historically, work on asynchronous methods for solving linear equations focused on proving convergence in the limit. How the rate of convergence compares to the rate of convergence of the synchronous counterparts, and how it scales when the number of processors increase, was seldom studied and is still not well understood. Furthermore, the applicability of these methods was limited to restricted classes of matrices (e.g., diagonally dominant matrices).

We propose a shared-memory asynchronous method for general symmetric positive definite matrices. We rigorously analyze the convergence rate and prove that it is linear and close to that of our method’s synchronous counterpart as long as not too many processors are used (relative to the size and sparsity of the matrix). A key component is randomization, which allows the processors to make guaranteed progress without introducing synchronization. Our analysis shows a convergence rate that is linear in the condition number of the matrix, and depends on the number of processors and the degree to which the matrix is sparse.

By: Haim Avron, Alex Druinsky, Anshul Gupta

Published in: RC25373 in 2013

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

rc25373.pdf

Questions about this service can be mailed to reports@us.ibm.com .