Active Online Classification via Information Maximization

We propose an online classification approach for co-occurrence data which is based on a simple information theoretic principle. We further show how to properly estimate the uncertainty associated with each prediction of our scheme and demonstrate how to exploit these uncertainty estimates. First, in order to abstain highly uncertain predictions. And second, within an active learning framework, in order to preserve classification accuracy while substantially reducing training set size. Our method is highly efficient in terms of run-time and memory footprint requirements. Experimental results in the domain of text classification demonstrate that the classification accuracy of our method is superior or comparable to other state-of-the-art online classification algorithms.

By: Noam Slonim; Elad Yom-Tov; Koby Crammer

Published in: H-0307 in 2011


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .