Expoiting Structural Duplication for Lifetime Reliability Enhancement

Increased power densities (and resultant temperatures) and other effects of device scaling are predicted to cause significant lifetime reliability problems in the near future. In this paper, we study two techniques that leverage microarchitectural structural redundancy for lifetime reliability enhancement. First, in structural duplication (SD), redundant microarchitectural structures are added to the processor and designated as spares. Spare structures can be turned on when the original structure fails, increasing the processor’s lifetime. Second, graceful performance degradation (GPD) is a technique which exploits existing microarchitectural redundancy for reliability. Redundant structures that fail are shut down while still maintaining functionality, thereby increasing the processor’s lifetime, but at a lower performance.

Our analysis shows that exploiting structural redundancy can provide significant reliability benefits, and we present guidelines for efficient usage of these techniques by identifying situations where each is more beneficial. We show that GPD is the superior technique when only limited performance or cost resources can be sacrificed for reliability. Specifically, on average for our systems and applications, GPD increased processor reliability to 1.42 times the base value for less than a 5% loss in performance. On the other hand, for systems where reliability is more important than performance or cost, SD is more beneficial. SD increases reliability to 3.17 times the base value for 2.25 times the base cost, for our applications. Finally, a combination of the two techniques (SD+GPD) provides the highest reliability benefit.

By: Jayanth Srinivasan; Sarita V. Adve; Pradip Bose; Jude A. Rivers

Published in: RC23439 in 2004


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to reports@us.ibm.com .