A Characterization of Shared Data Access Patterns in UPC Programs

The main attraction of Partitioned Global Address Space (PGAS) languages to programmers is the ability to distribute the data to exploit the affinity of threads within shared-memory domains. Thus, PGAS languages, such as Unified Parallel C (UPC), are a promising programming paradigm for emerging parallel machines that employ hierarchical data- and task-parallelism. For example, large systems are built as distributed-shared memory architectures, where multi-core nodes access a local, coherent address space and many such nodes are interconnected in a non-coherent address space to form a high-performance system. This paper studies the access patterns of shared data in UPC programs. By analyzing the access patterns of shared data in UPC we are able to make three major observations about the characteristics of programs written in a PGAS programming model: (i) there is strong evidence to support the development of automatic identification and automatic privatization of local shared data accesses; (ii) the ability for the programmer to specify how shared data is distributed among the executing threads can result in significant performance improvements; (iii) running UPC programs on a hybrid architecture will significantly increase the opportunities for automatic privatization of local shared data accesses.

By: Christopher Barton; Calin Cascaval; Jose Nelson Amaral

Published in: RC24066 in 2006


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to reports@us.ibm.com .