Tutorial: Brain-Inspired Computing using Phase-Change Memory Devices

Copyright © (2018) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics

There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and in particular, phase-change memory (PCM), arguably the most advanced emerging non-volatile memory technology. Given a lack of comprehensive understanding of the working principles of the brain, brain-inspired computing is likely to be realized in multiple levels of inspiration. In the first level of inspiration, the idea would be to build computing units where memory and processing co-exist in some form. Computational memory is an example where the physical attributes and state dynamics of memory devices are exploited to perform certain computational tasks in the memory itself with very high areal and energy efficiency. In a second level of brain-inspired computing using PCM devices, one could design a co-processor comprising multiple cross-bar arrays of PCM devices to accelerate training of deep neural networks. PCM technology could also play a key role in the space of specialized computing substrates for spiking neural networks and this can be viewed as the third level of brain-inspired computing using these devices.

By: Abu Sebastian, Manuel Le Gallo, Geoffrey W. Burr, Sangbum Kim, Matthew BrightSky, Evangelos Eleftheriou

Published in: Journal of Applied Physics, volume 12411, (no ), pages 10.1063/1.504241 in 2018

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

RZ3946.pdf

Questions about this service can be mailed to reports@us.ibm.com .