Convex Relaxations of Non-Convex Mixed Integer Quadratically Constrained Programs: Projected Formulations

A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher dimensional space by introducing variables Yij to represent each of the products xixj of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint and disjunctive programming. On the other hand, their main drawback is their huge size, even for problems of moderate size. In this paper, we study methods to build low-dimensional relaxations of MIQCP that capture the strength of the extended formulations. To do so, we use projection techniques pioneered in the context of the lift-and-project methodology. We show how the extended formulation can be algorithmically projected to the original space by solving linear programs. Furthermore, we extend the technique to project the SDP relaxation by solving SDPs. In the case of an MIQCP with a single quadratic constraint, we propose a subgradient-based heuristic to efficiently solve these SDPs. We also propose a new eigen reformulation for MIQCP, and a cut generation technique to strengthen this reformulation using polarity. We present extensive computational results to illustrate the efficiency of the proposed techniques. Our computational results have two highlights. First, on the GLOBALLib instances, we are able to generate relaxations that are almost as strong as those proposed in our companion paper even though our computing times are about 100 times smaller, on average. Second, on the box QP instances, the strengthened relaxations generated by our code are almost as strong as the well-studied SDP+RLT relaxations and can be solved in less than 2 sec even for larger instances with 100 variables; the SDP+RLT relaxations of the same set of instances can take up to a couple of hours to solve using a state-of-the-art SDP solver.

By: Anureet Saxena; Pierre Bonami; Jon Lee

Published in: RC24695 in 2008


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .