Extension Complexity Lower Bounds for Mixed-Integer Extended Formulations

We prove that any mixed-integer linear extended formulation for the matching polytope of the complete graph on n vertices, with a polynomial number of constraints, requires many integer variables. By known reductions, this result extends to the traveling salesman polytope. This lower bound has various implications regarding the existence of small mixed-integer mathematical formulations of common problems in operations research. In particular, it shows that for many classic vehicle routing problems and problems involving matchings, any compact mixed-integer linear description of such a problem requires a large number of integer variables. This provides a first non-trivial lower bound on the number of integer variables needed in such settings.

By: Robert Hildebrand, Robert Weismantel, Rico Zenklusen

Published in: RC25636 in 2016

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

rc25636.pdf

Questions about this service can be mailed to reports@us.ibm.com .