Power-Performance and Power Swing Characterization in Adaptive Microarchitectures

In this paper, we present an analysis of some of the fundamental power-performance tradeoffs in processors that employ adaptive techniques to vary sizes, bandwidths, clock-gating modes and clock frequencies. Initial expectations are set using simple analytical reasoning models. Later, simulation-based data is presented in the context of a simple, low-power super scalar processor prototype (called LPX) that is currently under development as a test vehicle. There are three fundamental issues that we attempt to address in this paper: (a) Does dynamic adaptation - in clocking or microarchitectural resources - help extend the power-performance efficiency range of wider-issue superscalars ? (b) What factors of power and power-density reductions are within practical reach in future adaptive processors ? (c) Does the presence of dynamic adaptation modes cause unacceptably large, worst-case power (or current) swings in affected sub-units ?

By: Pradip Bose, David M. Brooks, Viji Srinivasan, Philip G. Emma

Published in: RC22362 in 2002


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to reports@us.ibm.com .