When a program fails, the cause of the failure is often buried in a long, hard-to-understand error trace. We present a new technique for automatic error localization, which formally unifies prior approaches based on computing interpolants and minimal unsatisfiable cores of failing executions. Our technique works by automatically reducing an error trace to its essential components—a minimal set of statements that are responsible for the error, together with key predicates that explain how these statements lead to the failure. We prove that our approach is sound, and we show that it is useful for debugging real programs.
By: Vijayaraghavan Murali, Nishant Sinha, Emina Torlak, Satish Chandra
Published in: RI 14007 in 2014
LIMITED DISTRIBUTION NOTICE:
This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.
Questions about this service can be mailed to reports@us.ibm.com .