Bound tightening is an important component of algorithms for solving nonconvex Mixed Integer Nonlinear Programs. A probing algorithm is a bound-tightening procedure that explores the consequences of restricting a variable to a subinterval with the goal of tightening its bounds.We propose a variant of probing where exploration is based on iteratively applying a truncated Branch-and-Bound algorithm. As this approach is computationally expensive, we use a Support-Vector-Machine classifier to infer whether or not the probing algorithm should be used. Computational experiments demonstrate that the use of this classifier saves a substantial amount of CPU time at the cost of a marginally weaker bound tightening.
By: Giacomo Nannicini; Pietro Belotti; Jon Lee; Jeff Linderoth; François Margot; Andreas Wächter
Published in: RC25103 in 2011
LIMITED DISTRIBUTION NOTICE:
This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.
Questions about this service can be mailed to reports@us.ibm.com .