Isometry-enforcing Data Transformations for Improving Sparse Model Learning

Imposing sparsity constraints (such as l1-regularization) on the model parameters is a practical and efficient way of handling very high-dimensional data, which also yields interpretable models due to embedded feature-selection. Compressed sensing (CS) theory provides guarantees on the quality of sparse signal (in our case, model) reconstruction that relies on the so-called restricted isometry property (RIP) of the sensing (design) matrices. This, however, cannot be guaranteed as these matrices form a subset of the underlying data set. Nevertheless, as we show, one can find a distance-preserving linear transformation of the data such that any transformed subspace of the data satisfied the RIP at some level. We demonstrate the effects of such RIP-enforcing data transformation on sparse learning methods such as sparse and compressed Random Fields, as well as sparse regression (LASSO), in the context of classifying mental states based on fMRI data.

By: Avishy Carmi; Irina Rish; Guillermo Cecchi; Dimitri Kanevsky; Bhuvana Ramabhadran

Published in: RC24801 in 2009


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .