Hybrid Electromagnetic Modeling of Noise Interactions in Packaged Electronics Based on the Partial Element Equivalent Circuit Formulation

        The Partial Element Equivalent Circuit method is used to develop a flexible, hierarchical electromagnetic modeling and simulation environment for the analysis of noise generation and signal degradation mechanisms in packaged electronic components and systems. The circuit-oriented approach used by the method for the development of the numerical approximation of the electric field integral equation is used to develop a SPICE-compatible, yet fully dynamic, discrete approximation of the electromagnetic problem. Contrary to other fullwave formulations, the proposed method has the important attribute of lending itself to a very systematic and physical model complexity reduction on the basis of the electrical size of the various portions of the system. Thus, a hybrid electromagnetic modeling and simulation environment is established for the analysis of complex structures, which exhibit large variation in electrical size over their volume, using a combination of lumped circuit elements, transmission lines, as well as three-dimensional distributed electromagnetic models which may or may not account for retardation, depending on the electrical size of the part of the structure that is being modeled. These special attributes of the proposed electromagnetic simulation environment are demonstrated through several examples from its application to the modeling of noise interactions in generic intercaonnect and package geometries.

By: William Pinello (Univ. of Arizona), Andreas C. Cangellaris (Univ. of Arizona), Albert Ruehli

Published in: RC20753 in 1997

This Research Report is not available electronically. Please request a copy from the contact listed below. IBM employees should contact ITIRC for a copy.

Questions about this service can be mailed to reports@us.ibm.com .