Zygaria: Storage Performance as a Managed Resource

Large-scale storage systems often hold data for multiple applications and users. A problem in such systems is isolating applications and users from each other to prevent their workloads from interacting in unexpected ways. Another is ensuring that each application receives an appropriate level of performance. As part of the solution to these problems, we have designed a hierarchical I/O scheduling algorithm to manage performance resources on an underlying storage device. Our algorithm uses a simple allocation abstraction: an application or user has a corresponding pool of through-put, and manages throughput within its pool by opening sessions. The algorithm ensures that each pool and session receives at least a reserve rate of throughput and caps usage at a limit rate, using hierarchical token buckets and EDF I/O scheduling. Once it has fulfilled the reserves of all active sessions and pools, it shares unused throughput fairly among active sessions and pools such that they tend to receive the same amount. It thus combines deadline scheduling with proportional-style resource sharing in a novel way. We assume that the device performs its own low-level head scheduling, rather than modeling the device in detail. Our implementation shows the correctness of our algorithm, imposes little overhead on the system, and achieves through-put nearly equal to that of an unmanaged device.

By: Theodore M. Wong; Richard A. Golding; Caixue Lin; Ralph A. Becker-Szendy

Published in: RJ10376 in 2006

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

rj10376.pdf

Questions about this service can be mailed to reports@us.ibm.com .