Scoring Disease-Medication Associations Using Advanced NLP, Machine Learning, and Multiple Content Sources

Effective knowledge resources are critical for developing successful clinical decision support systems that alleviate the cognitive load on physicians in patient care. In this paper, we describe two new methods for building a knowledge resource of disease to medication associations. These methods use fundamentally different content for clinical reasoning and are based on advanced natural language processing and machine learning techniques. One method uses distributional semantics on large medical text, and the other uses data mining on a large number of patient records. The methods are evaluated using 25,379 unique disease-medication pairs extracted from 100 de-identified longitudinal patient records of a large multi-provider hospital system. We measured recall (R), precision (P), and F scores for positive and negative association prediction, along with coverage and accuracy. While individual methods performed well, a combined stacked classifier achieved the best performance, indicating the limitations and unique value of each resource and method. In predicting positive associations, the stacked combination significantly outperformed the baseline (a distant semi-supervised method on large medical text), achieving F scores of 0.75 versus 0.55 on the pairs from the patient records, and F scores of 0.69 and 0.35 on unique pairs.

By: Bharath Dandala, Murthy Devarakonda, Mihaela Bornea, Christopher Nielson

Published in: RC25640 in 2016


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .