Efficient High-precision Dense Matrix Algebra on Parallel Architectures for Nonlinear Discrete Optimization

We provide a proof point for the idea that matrix-based algorithms for discrete optimization problems, mainly conceived for proving theoretical efficiency, can be easily and efficiently implemented on massively-parallel architectures by exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision dense linear algebra. We have successfully implemented our algorithm on the Blue Gene/L computer at IBM’s T.J. Watson Research Center. Additionally, we have delineated the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational, reliability, and interconnect perspectives.

By: John Gunnels; Jon Lee; Susan Margulies

Published in: RC24682 in 2008


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to reports@us.ibm.com .