Global Optimization of Nonconvex Problems with Multilinear Intermediates

We consider global optimization of nonconvex problems containing multilinear functions. It is well known that the convex hull of a multilinear function over a box is polyhedral, and the facets of this polyhedron can be obtained by solving a linear optimization problem (LP). When used as cutting planes, these facets can significantly enhance the quality of conventional relaxations in general-purpose global solvers. However, in general, the size of this LP grows exponentially with the number of variables in the multilinear function. To cope with this growth, we propose a graph decomposition scheme that exploits the structure of a multilinear function to decompose it to lower-dimensional components, for which the aforementioned LP can be solved very efficiently by employing a customized simplex algorithm. We embed this cutting plane generation strategy at every node of the branch-and-reduce global solver BARON, and carry out an extensive computational study on quadratically constrained quadratic problems, multilinear problems, and polynomial optimization problems. Results show that the proposed multilinear cuts enable BARON to solve many more problems to global optimality and lead to an average 60% CPU time reduction.

By: Xiaowei Bao, Aida Khajavirad, Nikolaos V. Sahinidis, Mohit Tawarmalani

Published in: RC25318 in 2012

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

rc25318.pdf

Questions about this service can be mailed to reports@us.ibm.com .