Defining the Controlling Parameter in Constrained Discriminative Linear Transform for Supervised Speaker Adaptation

Constrained discriminative linear transform (CDLT) optimized with Extended Baum-Welch (EBW) has been presented in the literature as a discriminative speaker adaptation method that outperforms the conventional maximum likelihood algorithm. Defining the controlling parameter of EBW to achieve the best performance of speaker adaptation, however, still remains an open question. This paper presents an empirical study on this issue. Results of our experiment suggest that a log-linear relationship exists between the optimal controlling parameter and the amount of data. This relationship can be used to efficiently define the controlling parameter for each test speaker to improve CDLT performance. We also discuss the possibility of generalizing the log-linear rule to a wider range of learning problems because such knowledge can substantially reduce the computation effort for parameter tuning.

By: Danning Jiang; Dimitri Kanevsky; Emmanuel Yashchin; Yong Qin

Published in: RC25079 in 2010

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

rc25079.pdf

Questions about this service can be mailed to reports@us.ibm.com .