Measuring Proximity on Graphs with Side Information

This paper studies how to incorporate side information (such as users’ feedback) in measuring node proximity on large graphs. Our method (ProSIN) is motivated by the well studied random walk with restart (RWR). The basic idea of the proposed ProSIN is to leverage side information to refine the graph structure so that the random walk is biased towards/away from some specific zones on the graph. Our case studies demonstrate that ProSIN is well-suited in a variety of applications, including neighborhood search, center-piece subgraphs, and image caption. Given the potential computational complexity of ProSIN, we also propose a fast algorithm (Fast-ProSIN) that exploits the smoothness of the graph structures with/without side information. Our experimental evaluation shows that Fast-ProSIN achieves significant speedups (up to 49x) over straightforward implementations.

By: Hanghang Tong; Huiming Qu; Hani T. Jamjoon

Published in: RC24668 in 2008


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .