Control and Verification of High-Dimensional Systems with DSOS and SDSOS Programming

In this paper, we consider linear programming (LP) and second order cone programming (SOCP) based alternatives to sum of squares (SOS) programming and apply this framework to high-dimensional problems arising in control applications. Despite the wide acceptance of SOS programming in the control and optimization communities, scalability has been a key challenge due to its reliance on semidefinite programming (SDP) as its main computational engine. While SDPs have many appealing features, current SDP solvers do not approach the scalability or numerical maturity of LP and SOCP solvers. Our approach is based on the recent work of Ahmadi and Majumdar [1], which replaces the positive semidefiniteness constraint inherent in the SOS approach with stronger conditions based on diagonal dominance and scaled diagonal dominance. This leads to the DSOS and SDSOS cones of polynomials, which can be optimized over using LP and SOCP respectively. We demonstrate this approach on four high dimensional control problems that are currently well beyond the reach of SOS programming: computing a region of attraction for a 22 dimensional system, analysis of a 50 node network of oscillators, searching for degree 3 controllers and degree 8 Lyapunov functions for an Acrobot system (with the resulting controller validated on a hardware platform), and a balancing controller for a 30 state and 14 control input model of the ATLAS humanoid robot. While there is additional conservatism introduced by our approach, extensive numerical experiments on smaller instances of our problems demonstrate that this conservatism can be small compared to SOS programming.

By: Anirudha Majumdar, Amir Ali Ahmadi, Russ Tedrake

Published in: RC25454 in 2014


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .