Randomized Query Processing in Robot Motion Planning

        The subject of this paper is the analysis of a randomized preprocessing scheme that has been used for query processing in robot path planning. The attractiveness of the scheme stems from its general applicability to virtually any path-planning problem, and its empirically observed success. In this paper we initiate a theoretical basis for explaining this empirical success. Under a simple assumption about the configuration space, we show that it is possible to perform preprocessing following which queries can be answered quickly. En route, we consider related problems on graph connectivity in the evasiveness model, and art-gallery theorems.

By: L. Kavraki (Stanford Univ.), J. C. Latombe (Stanford Univ.), R. Motwani (Stanford Univ.), P. Raghavan

Published in: RC19997 in 1995


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to reports@us.ibm.com .