Latent Class Regression on Latent Factors

In the research of public health, psychology, and social sciences, many research questions investigate the relationship between a categorical outcome variable and continuous predictor variables. The focus of this paper is to develop a model to build this relationship when both the categorical outcome and the predictor variables are latent (i.e. not observable directly). This model extends the latent class regression model so that it can include regression on latent predictors. Maximum likelihood estimation is used and two numerical methods for performing it are described: the Monte Carlo Expectation and Maximization algorithm (MCEM) and Gaussian quadrature followed by quasi-Newton algorithm. A simulation study is carried out to examine the behavior of the model under different scenarios. A data example involving adolescent health is used for demonstration where the latent classes of eating disorders risk are predicted by the latent factor body satisfaction.

By: Jia Guo, Melanie Wall, Yasuo Amemiya

Published in: RC23329 in 2004


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .