Weyl Semi-Metal-Based High-Frequency Amplifiers

In this work, we propose and simulate a novel amplifier based on Weyl semi-metals, e.g. WP2 and MoP2. These topological materials have been shown to exhibit extremely large magnetoresistance at cryogenic conditions. In the proposed device, a gate current induces a local magnetic field which controls the resistivity of the Weyl semi-metal channel and the resulting output current. Simulations of the magnetic fields are performed to optimize the device design, as well as thermal modeling to determine self-heating effects. Device operation is simulated using an analytical 3D model of magnetic fields and resistivity, and a small-signal model. Results show that the proposed device can provide high gain (20-30 dB) with extremely low DC power dissipation (40 μW) and high transition frequencies. This type of device is promising to replace HEMTs in quantum computers, where the low power dissipation enables it to be integrated at lower cryostat temperature stages.

By: A. Toniato, B. Gotsmann, E. Lind, and C. B. Zota

Published in: Proc. IEEE International Electron Devices Meeting (IEDM), IEEE in 2019

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

RZ3968.pdf

Questions about this service can be mailed to reports@us.ibm.com .