Stabilizer-Based Symmetry Breaking Constraints for Mathematical Programs

Mathematical programs whose formulation is symmetric often take a long time to solve using Branch-and-Bound type algorithms, because of the several symmetric optima. A simple technique used in these cases is to adjoin symmetry breaking constraints to the formulation before solving the problem. These constraints: (a) aim to guarantee that at least one optimum is feasible, whilst making some of the symmetric optima infeasible; and (b) are usually associated to the different orbits of the action of the formulation group on the set of variable indices. In general, one cannot adjoin symmetry breaking constraints from more than one orbit. In [13], some (restrictive) sufficient conditions are presented which make it possible to adjoin such constraints from several orbits at the same time. In this paper we present a new, less restrictive method for the same task, and show it performs better computationally.

By: Leo Liberti, James Ostrowski

Published in: RC25381 in 2013


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .