Compressed Sensing with Approximate Message Passing using In-Memory Computing

Copyright © (2018) by IEEE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distrubuted for profit. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

In-memory computing is a promising non-von Neumann approach where certain computational tasks are performed within resistive memory units by exploiting their physical attributes. In this paper, we propose a new method for fast and robust compressed sensing of sparse signals with approximate message passing recovery using in-memory computing. The measurement matrix for compressed sensing is encoded in the conductance states of resistive memory devices organized in a crossbar array. This way, the matrix-vector multiplications associated with both the compression and recovery tasks can be performed by the same crossbar array without intermediate data movements at potential O(1) time complexity. For a signal of size N, the proposed method achieves a potential O(N)-fold recovery complexity reduction compared with a standard software approach. We show the array-level robustness of the scheme through large-scale experimental demonstrations using more than 256k phase-change memory devices.

Index Terms—Approximate message passing, Compressed sensing, In-memory computing, Phase-change memory.

By: Manuel Le Gallo, Abu Sebastian, Giovanni Cherubini, Heiner Giefers, Evangelos Eleftheriou

Published in: IEEE Transactions on Electron Devices, volume 65, (no 10), pages 10.1109/TED.2018.2865352 in 2018

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

RZ3944.pdf

Questions about this service can be mailed to reports@us.ibm.com .