Using Secure Coprocessors for Privacy Preserving Collaborative Data Mining and Analysis

Secure coprocessors have traditionally been used as a keystone of a security subsystem, eliminating the need to protect the rest of the subsystem with physical security measures. With technological advances and hardware miniaturization they have become increasingly powerful. This opens up the possibility of using them for non traditional use. This paper describes a solution for privacy preserving data sharing and mining using cryptographically secure but resource limited coprocessors. It uses memory light data mining methodologies along with a light weight database engine with federation capability, running on a coprocessor. The data to be shared resides with the enterprises that want to collaborate. This system will allow multiple enterprises, which are generally not allowed to share data, to do so solely for the purpose of detecting particular types of anomalies and for generating alerts. We also present results from experiments which demonstrate the value of such collaborations.

By: Bishwaranjan Bhattacharjee; Naoki Abe; Kenneth Goldman; Bianca Zadrozny; Vamsavardhana R. Chillakuru; Marysabel del Carpio; Chid Apte

Published in: RC23970 in 2006


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .