A Master Equation Approach to the Simulation of Electron Transport In Small Semiconductor Devices

        Previously [J. Appl. Phys. 83, 270 (1998)] the Pauli master equation has been argued to constitute an equation suitable for the simulation of steady-state electron transport in semiconductor devices of length L smaller than the dephasing length \lambda_\phi in the contacts. Here the master equation is derived emphasizing the role played by the dissipative interactions of the Van Hove-type, by the Markov approximation, and by the Van Hove limit in establishing irreversibility. An extension of the method to realistic band structures is also presented. Finally, the approach is applied to simulate electron transport in a simple one-dimensional Si n-i-n diode at 77K.

By: M. V. Fischetti

Published in: RC21283 in 1998

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

RC21283.zip

Questions about this service can be mailed to reports@us.ibm.com .