Unifying Simulatability Definitions in Cryptographic Systems under Different Timing Assumptions

The cryptographic concept of simulatability has become a salient technique for faithfully analyzing and proving security properties of arbitrary cryptographic protocols. We investigate the relationship between simulatability in synchronous and asynchronous frameworks by means of the formal models of Pfitzmann et. al., which are seminal in using this concept in order to bridge the gap between the formal-methods and the cryptographic community. We show that the synchronous model can be seen as a special case of the asynchronous one with respect to simulatability, i.e., we present an embedding between both models that we show to preserve simulatability. We show that this result allows for carrying over lemmas and theorems that rely on simulatability from the asynchronous model to its synchronous counterpart without any additional work. Hence future work can concentrate on the more general asynchronous case, without having to neglect the analysis of synchronous protocols.

By: Michael Backes

Published in: RZ3478 in 2003

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

rz3478.pdf

Questions about this service can be mailed to reports@us.ibm.com .