Online Learning with Prior Knowledge

The standard so-called experts algorithms are methods for utilizing a given set of “experts” to make good choices in a sequential decision-making problem. In the standard setting of experts algorithms, the decision maker chooses repeatedly in the same “state” based on information about how the different experts would have performed if chosen to be followed. In this paper we seek to extend this framework by introducing state information. More precisely, we extend the framework by allowing an experts algorithm to rely on state information, namely, partial information about the cost function, which is revealed to the decision maker before the latter chooses an action. This extension is very natural in prediction problems. For illustration, an experts algorithm, which is supposed to predict whether the next day will be rainy, can be extended to predicting the same given the current temperature.

We introduce new algorithms, which attain optimal performance in the new framework, and apply to more general settings than variants of regression that have been considered in the statistics literature.

By: Elad Hazan; Nimrod Megiddo

Published in: RJ10412 in 2007


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .