An Algorithmic Framework for Convex Mixed Integer Nonlinear Programs

This paper is motivated by the fact that mixed integer nonlinear programming is an important and difficult area for which there is a need for developing new methods and software for solving large-scale problems. Moreover, both fundamental building blocks, namely mixed integer linear programming and nonlinear programming, have seen considerable and steady progress in recent years. Wishing to exploit expertise in these areas as well as on previous work in mixed integer nonlinear programming, this work represents the first step in an ongoing and ambitious project within an open-source environment. COIN-OR is our chosen environment for the development of the optimization software. A class of hybrid algorithms, of which branch and bound and polyhedral outer approximation are the two extreme cases, is proposed and implemented. Computational results that demonstrate the effectiveness of this framework are reported, and a library of mixed integer nonlinear problems that exhibit convex continuous relaxations is made publicly available.

By: Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Gérard Cornuéjols, Ignacio E. Grossmann, Carl D. Laird, Jon Lee, Andrea Lodi, François Margot, Nicolas Sawaya, Andreas Wächter

Published in: RC23771 in 2005


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .