
RI 09009 April 27, 2009 Computer Science

IBM Research Report

MobiVine - A Middleware Layer to
Handle Fragmentation of Platform
Interfaces for Mobile Applications

Vikas Agarwal, Sunil Goyal, Sumit Mittal, Sougata

Mukherjea

IBM Research Division

IBM India Research Lab

4, Block - C, Institutional Area, Vasant Kunj
New Delhi - 110070. India.

IBM Research Division

Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo -

Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for

publication outside of IBM and will probably be copyrighted is accepted for publication.

It has been issued as a Research Report for early dissemination of its contents. In view

of the transfer of copyright to the outside publisher, its distribution outside of IBM

prior to publication should be limited to peer communications and specific requests.

After outside publication, requests should be filled only by reprints or legally obtained

copies of the article (e.g., payment of royalties). Copies may be requested from IBM

T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown Heights, NY

10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at

http://domino.watson.ibm.com/library/CyberDig.nsf/home

MobiVine - A Middleware Layer to Handle

Fragmentation of Platform Interfaces for Mobile

Applications

Vikas Agarwal, Sunil Goyal, Sumit Mittal, Sougata Mukherjea

IBM India Research Laboratory, New Delhi
{avikas, gsunil, sumittal, smukherj}@in.ibm.com

Abstract. Rapid enhancements in computing power, memory, display,
etc., have propelled mobile phones as a platform to deploy and execute
a variety of applications. To foster creation of rich mobile applications,
popular platform vendors such as Android, iPhone and Nokia S60 offer
extensive middleware support. This includes not only helping developers
code and package their application modules in a format suitable for
deployment, but also providing ‘interfaces’ to a) access information on the
mobile device (for e.g. user location), and b) invoke device capabilities
(like camera), from within the applications. Although usage of such
platform interfaces leads to richer modules, it requires the developer
to deal with application fragmentation arising due to heterogeneity in
syntax, semantics and implementation of these interfaces across different
platforms. In this paper, we first look into the problem posed by this
fragmentation and characterize it’s uniqueness in the mobile setting.
Thereafter, we present ‘M-Proxy’, a semantically structured unit to absorb
platform interface heterogeneity, and use it as a building block to develop
‘MobiVine’, a middleware ‘de-fragmentation’ layer for mobile applications.
We demonstrate how MobiVine can be seamlessly integrated with existing
platform middlewares using the notion of ‘M-Plugins’. We also analyze and
evaluate the effectiveness of MobiVine through implementations for three
mobile platforms - Android, Nokia S60 and Android WebView.

Keywords - Mobile Platforms, Fragmentation, Abstraction Layer

1 Introduction

With rapid enhancements in computing power, memory, display, etc., mobile
phones have emerged from being regarded as a mere communication device to
being a platform for deploying and executing a plethora of applications. Today’s
devices enable not only simple applications like ring-tones and calendar, but also
complex ones such as games and document processing softwares. In true essence,
a mobile phone can be regarded as a mini-sized computer, drawing upon increased
user expectation and expertise. New technologies are being invented to support
enterprise and personal use of the mobile platform, including migration of legacy
desktop applications to mobile platforms [2, 5], mobile device management, new
user interfaces, mobile commerce, etc.

To help developers rapidly create rich mobile applications, popular platform
vendors offer extensive middleware support. This includes allowing a developer
access to different platform resources, such as the underlying operating system,
middleware components, useful libraries and tools, etc. For instance, Android1

provides a Linux-based open-source platform onto which independent third party
developers can create and port their applications, while making use of services like
search, Gmail and Google Maps in the process. Similarly, Nokia S602, iPhone3 and
many other platforms offer their own application development set-up. Furthermore,
most platforms also expose interfaces that provide access to, from within the
applications, a variety of richness available on the mobile handset - information
(user’s contacts, calendar, geographic location, etc.) as well as functionality
(making calls, sending SMSes, using the camera, etc.). Richer applications for
a mobile platform can be composed by combining application logic with these
platform interfaces. For example, using the location information available on the
mobile phone, one can design a number of location-based applications - directory
services, workforce management solutions, etc.

In this paper, we look at the problem posed by fragmentation of mobile
platform interfaces. As illustrated in the next section, these interfaces differ in both
syntax and semantics, make use of platform specific data structures and properties,
throw platform specific exceptions, and are also characterized by inconsistencies
in implementation by different vendors. This has bearing on the portability of
mobile applications across multiple platforms. It is important to note, however,
that solutions have been proposed for similar problems in the desktop world.
For example, standardization approaches such as POSIX4, have been successful
in providing uniform APIs for accessing OS services. Similarly, programming
techniques such as abstraction through models aim to hide heterogeneity in
a manner that makes the applications easily portable. Although attempts are
being made to apply similar techniques in the mobile setting, they fall short of
being equally effective due to various unique characteristics of this domain - (a)
tight coupling of the application development and deployment model to platform
middleware, (b) strong desire by vendors to offer differentiated API functionality
to developers, and (c) rapidly evolving platforms and arrival of new ones.

Our contributions in this paper can be summarized as:

– We study the problem of application fragmentation due to heterogeneity
in platform interfaces, and characterize the refinements needed to apply
corresponding solutions in the desktop/OS world to a mobile setting.

– We propose ‘MobiVine’, a middleware layer based on ‘M-Proxy’ (a semantically
structured unit to absorb fragmentation of platform interfaces) and ‘M-Plugin’
(an integration artifact) to handle fragmentation issues for mobile applications.

– With the help of a prototype implementation for three platforms, we showcase
the usefulness of our approach and evaluate its effectiveness.

1 Android. See http://www.android.com
2 S60 Platform. See http://www.s60.com
3 Apple iPhone. See http://www.apple.com/iphone
4 See http://www.opengroup.org/onlinepubs/009695399

IBM India Research Lab, New Delhi

IBM Confidential

Packaging, UI
Application
logic

Application
logic

Application
logic

Mobile Middleware Platform

Call

Sms

Http

Proximity
Alerts

Application Core

Server-side
Application

• Agent Tracking
• Request Assignment
• Activity Log

•
•
• Platform

Blocks

Fig. 1. Mobile Workforce Management Application

The rest of this paper is organized as follows. In Section 2, we articulate the
fragmentation issues in mobile applications due to usage of platform interfaces. We
then propose and describe MobiVine in Section 3, followed by its implementation
in Section 4 for three different platforms. Section 5 presents an evaluation of
MobiVine with respect to various software engineering and performance metrics,
and Section 6 provides a discussion of related work. Finally, we conclude in
Section 7 with some directions for future work.

2 Motivation

Consider a mobile workforce management solution that helps an enterprise manage
its on-field agents, with respect to their tracking and task assignment. Figure 1
shows how such an application can be built as a combination of modules running on
the middleware platform of agents’ mobile devices and a server-side application.
As the figure depicts, each device-side component has a core that is presented
via a suitable user interface (UI) to the agent, and is also packaged as per the
requirements (for deployment and execution) of the corresponding middleware.
The core of the application can be further partitioned into consisting of several
platform blocks bound together by application logic blocks. Platform blocks make
use of platform interfaces and embed the associated functionality or data within
the application logic blocks. For example, one can determine the proximity of an
agent to a pre-specified region via the addProximityAlert interface. Similarly, to
communicate with the server side application5, one can use the Http interface.
Further, additional functionality such as sendSms and makeACall enable quick
communication of the agents with, say, the region supervisor.

From a developer’s perspective, it is desirable to roll out the workforce
management solution to multiple platforms, such as Android, Nokia S60,
WebKit [15], etc. While the server-side component can be built using Web
standards, porting of the device portion from one platform to another may involve
a number of efforts on part of the developer. For example, S60 platform follows
J2ME standard, iPhone requires programs to be developed in objective-C, while
for WebKit, applications need to be in HTML and JavaScript. Similarly, the UI
needs to be developed in accordance with the physical attributes of the device, such

5 that does the tasks of book-keeping, request allocation, etc.

as screen size and resolution. Although fragmentation of mobile applications is a
known and well-studied problem in general [3, 9, 10, 12, 13, 16], an interesting set of
challenges appear because of the usage of platform interfaces within an application.
As an example, let us examine the interface for adding location proximity alerts
on Android and S60 platforms:

On Android, the exposed interface is
- LocationManager.addProximityAlert (double latitude, double longitude, float radius, long

expiration, Intent intent) throws SecurityException

On S60, on the other hand, the corresponding interface is
- LocationProvider.addProximityListener (ProximityListener listener, Coordinates coor-

dinates, float proximityRadius) throws SecurityException, LocationException, IllegalArgu-

mentException, NullPointerException

Figures 2 (a) and (b) present code fragments corresponding to the invocation of
addProximityAlert API in the workforce management application for Android and
S60 platforms, respectively. As expected, there is a lot of variation in the code due
to differences in syntax as well as semantics of this interface across the platforms.
For example, on Android, registration of an alert leads to two sets of events - one
for the device entering a proximity region, and the other associated with exiting.
Further, multiple such events are generated, governed by the expiration period.
These features are missing on S60, and additional code needs to be incorporated
to support the same. This also leads to differences with respect to place(s) in the
code where business logic needs to be included for handling received alerts. On
the syntactic front, Android uses the Intent and IntentReceiver objects to realize a
callback function for the alert mechanism. On S60, on the other hand, one needs to
define an implementation for the abstract ProximityListener class. Similarly, there
is diversity in terms of the name of the interface, as well as in the ‘name’, ‘data
type’ and ‘ordering’ of various parameters. Finally, the interfaces differ in the set
of exceptions thrown; the conditions under which these exceptions are thrown are
determined by the underlying platform specification.

Two classical approaches for handling fragmentation of this form in the desktop
world are (1) standardization of APIs, and (2) usage of programming techniques
whereby the interface calls are wrapped, i.e. abstracted, in distinct modules which
are then, automatically or otherwise, ported across the platforms. As discussed in
Section 6, standardization efforts in the mobile domain 6 are currently piece-meal
and fractured, hampered further by the desire of platform vendors to keep their
products differentiated from others. Lack of standardization necessitates a de-
fragmentation model based on programming techniques. While such an approach
still applies conceptually, we argue that in a mobile setting it needs to cover the
following:

(1) Each interface is bound by properties and attributes specific to the underlying
middleware. For example, on Android, to obtain a handle of LocationManager
(that offers the proximity alert interface), the developer has to input the
‘application context’ of the corresponding Android application. Similarly, on S60, a

6 for instance those related to extending the mobile Java platform (J2ME)

public class WorkForceManagement extends Activity {
class ProximityIntentReceiver extends IntentReceiver {

double latitude;
double longitude;

public ProximityIntentReceiver(double latitude, double longitude) {
this.latitude = latitude;
this.longitude = longitude;

}

public void onReceiveIntent(Context ctxt, Intent i) {
String action = i.getAction();
if (action.equals(PROXIMITY_ALERT)) {

boolean entering = i.getBooleanExtra("entering", false);
 LocationManager lm = (LocationManager)

ctxt.getSystemService(Context.LOCATION_SERVICE);
Location loc = lm.getCurrentLocation("gps");

/* business logic for handling proximity events */
}

}
}

static final String PROXIMITY_ALERT =
"com.ibm.proxies.android.intent.action.PROXIMITY_ALERT";

...

...
public void onCreate(....) {

// registering for proximity events

Context context = this;
try {

ProximityIntentReceiver proximityReceiver =
new ProximityIntentReceiver(latitude, longitude);

context.registerReceiver(proximityReceiver,
new IntentFilter(PROXIMITY_ALERT));

LocationManager lm = (LocationManager)
context.getSystemService(Context.LOCATION_SERVICE);

Intent i = new Intent(PROXIMITY_ALERT);
lm.addProximityAlert(latitude, longitude, radius, timer, i);

} catch (Exception e)
// Handle Android specific exception

}
...

}
}

public class WorkForceManagement extends MIDlet implements
ProximityListener, LocationListener {

float radius;
Coordinates coordinates = null;
boolean entering = false;
long startTime, timeOut;
LocationProvider lp;

public void proximityEvent(Coordinates coordinates, Location lo) {
long currentTime = System.currentTimeMillis() / 1000;
if ((currentTime - startTime) > timeOut) { //time out

lp.setLocationListener(null, -1, -1, -1);
LocationProvider.removeProximityListener(this);
return;

}
entering = true;
//business logic for entry event

}

public void locationUpdated(LocationProvider lp, Location lo) {
long currentTime = System.currentTimeMillis() / 1000;
if ((currentTime - startTime) > timeOut) { //time out

lp.setLocationListener(null, -1, -1, -1);
LocationProvider.removeProximityListener(this);
return;

}

if (entering == false)
return;

float distance = getDistance(coordinates, lo);
if (distance > radius) {

 entering = false;
//add business logic for exit event
try {

// registering for proximity events
LocationProvider.addProximityListener(this, coordinates, radius);

} catch (Exception e) {
// Handle S60 specific exceptions

}
}

}

public void startApp() {
// registering for proximity events
this.radius = radius;
this.coordinates = new Coordinates (latitude, longitude, (float)altitude);
this.timeOut = timeOut;
this.startTime = System.currentTimeMillis() / 1000;
try {

criteria.setPreferredResponseTime(Criteria.NO_REQUIREMENT);
criteria.setVerticalAccuracy(50);
lp = LocationProvider.getInstance(criteria);
lp.setLocationListener(this, -1, -1, -1);
LocationProvider.addProximityListener(this, coordinates, radius);

} catch (Exception e) {
// Handle S60 specific exceptions

}
...

}
}

(a) (b)

Fig. 2. Code fragment for invoking proximity alert on (a) Android, and (b) Nokia S60.

LocationProvider instance is returned by the middleware on the basis of constraints
like accuracy desired, preferred response time, etc. - values for which are provided
by the developer.

Across the wide range of platforms available, such attributes and properties
are ‘inherently different’, i.e. cannot be abstracted out. Therefore, the de-
fragmentation model should absorb heterogeneity in a dual manner - in addition
to providing uniformity of semantics and syntax, it should offer enough flexibility
to incorporate attributes and properties specific to a platform, preferably through

Hardware Abstraction Layer

Operation System

Middleware

MobiVine Layer

iPhone
Toolkit

Android
Toolkit

S60
Toolkit

S
60A

nd
ro

idiP
ho

ne

In
te

gr
at

io
n

Binding
M-Proxies

M-Plugin

Fig. 3. MobiVine Overview

a mechanism generic across platforms.

(2) Application development for a platform, including packaging of various modules
and their deployment, is tightly coupled to the underlying middleware. For
example, on Android, the application extends an Activity, while on S60, it
needs to extend the MIDlet class. Further, during deployment on S60, the entire
application is packaged as a single jar file, that is qualified further with various
permissions, Over-The-Air (OTA) deployment properties, profile configuration etc.

To foster creation of applications, mobile middleware platforms typically offer
their own development environment or toolkit. Any de-fragmentation model
should, therefore, be structured in a manner that enables it to be seamlessly
integrated within the existing toolkit, thereby automatically supporting the desired
programming, packaging and configuration style for an application.

(3) The mobile market scenario is highly dynamic, with new platforms and features
being added with considerable rapidity. Thus, it becomes meaningful to have a
de-fragmentation technique which is easily extensible, i.e. new mobile platforms,
along with their underlying programming styles, specific attributes and properties,
as well as feature updates are incorporated with ease.

Although various techniques have been proposed in the literature for abstracting
heterogeneities in a mobile setting [4, 6, 7, 11], there is no model that incorporates
the above characteristics. We propose a middleware solution based on such a model
next, and thereafter describe its implementation and present its evaluation.

3 MobiVine Architecture

Figure 3 presents an overview of MobiVine, a middleware layer to handle
fragmentation of platform interfaces for mobile applications. As shown in the
figure, MobiVine consists of two main components. The first component, called ‘M-
Proxies’, helps abstract the heterogeneity in interfaces across different platforms
while binding to the underlying middleware stacks. The other component - ‘M-
Plugins’ - integrates MobiVine with existing tooling & deployment infrastructure
while utilizing the information kept in a structured format inside M-Proxies.

3.1 M-Proxy Model

Conceptually, the M(obiVine)-Proxy model is used to realize various platform
blocks of a mobile application. The proxy model structure, as shown in Figure 4,
consists of three planes. Whereas the first plane is directed towards removing
fragmentation at the broad semantic level, the second plane provides syntax
binding in the form of data types for parameters, callback handlers, return values,
etc. across different programming languages. The third plane contains binding
information for the underlying mobile platform middleware, including various
platform specific properties and attributes. Intuitively, at each plane in our design,
we capture a subset of the total information, and make it consistent in a manner
so that it can be built upon by the subsequent plane(s) with further concrete
information.

With the help of ‘add proximity alert’ interface introduced in the previous
section, we now describe in more detail each of these planes7.

Semantic Plane - In the first plane, called the semantic plane, we fix the
structure of the interface, in terms of the method name, number, meaning and
order of each parameter along with their dimensions, as well as the return value.
For instance, the listing below defines a common interface semantics for adding
proximity alerts in Android and S60.

<method>

<name>addProximityAlert</name>
<description> ... </description>
<parameterList>

<parameter>
<name> latitude </name>

<dimension> 1 </dimension>
<description> ... </description>

</parameter>
<parameter> .. longitude .. </parameter>
<parameter> .. altitude .. </parameter>

<parameter> .. radius .. </parameter>
<parameter> .. timer .. </parameter>

<parameter>
<name> proximityListener </name>
<callback>

<parameterList>
<refLat, refLong, refAlt, currentLocn, entering>

</parameterList>
</callback>

<parameter>
</parameterList>

</method>

The listing depicts a common method name, which in practice can be chosen
as the most accepted one across different platforms, or as per the discretion of
the proxy creator. Uniformity and consistency of parameters is also maintained.
For example, in contrast to code in Figure 2, now there is a common definition of
callback parameter for receiving alert notifications.

Syntactic Plane - In the second plane, called the syntactic plane, we bind the
interface structure with concrete data types required for different programming

7 The fragments produced here are simplified versions of our actual implementation,
based on an XML Schema defined by us. For clarity, we omit full Schema details.

Different
programming
languages

Different
Providers /
Platforms

Semantic Plane

Syntactic Plane

Binding Plane

Platform Interface Description

Java/J2ME C/C++ JavaScript

Android Nokia S60 Windows

• Properties

• Platform Specific Exceptions

• Implementation modules
Webkit

• Language specific API

• Data structure binding

•Parameter list
•Return type

• Method name

• Parameter List (Name,
Dimension, Allowed values)
• Return Object (Dimension)

Mobile Application

Platform
Blocks

Consistent
APIs

M- Proxy

Abstraction

Binding

MobiVine
Layer

Fig. 4. M-Proxy Model

languages. Accordingly, multiple such information portions are provided, one
for each language. In the listing shown below, we have attached data types
corresponding to the Java language.

<method>
<name>addProximityAlert</name>

<qualifiedParameterList>
<parameter> double </parameter>

<parameter> double </parameter>
<parameter> double </parameter>
<parameter> float </parameter>

<parameter> long </parameter>
<parameter>

com.ibm.telecom.proxy.ProximityListener
<callback>

<methodName>proximityEvent</methodName>
<qualifiedParameterList>

<double, double, double,

com.ibm.telecom.proxy.Location, boolean>
</qualifiedParameterList>

</callback>
</qualifiedParameterList>

</method>

It is important to note that types for a language need to be defined as
per the structure of that language. For example, while in Java we have a
callback ‘object’ that receives notifications, in JavaScript (or C) we can specify
a function (or a function pointer) for this purpose. For one language, however,
data structures will stay same across platforms. For instance, we have defined
common ‘ProximityListener’ and ‘Location’ structures for both Android and S60
platforms, as depicted above.

Binding Plane - In the third and final plane, the binding plane, we provide
implementation modules that realize this interface on different platforms. This is
also the place where we include platform specific attributes (through the notion
of a ‘property list’) as well as the underlying exception set.

<method>
<name>addProximityAlert</name>

<description> S60 implementation </description>
<qualifiedClassName>

com.ibm.S60.location.LocationProxy

…

Call

Location

SMS

������� ��� �

	�
�� ��� ���

���������

M
ob

iV
in

e
P

lu
g-

in

M
ob

iV
in

e
P

lu
g-

in

M
ob

iV
in

e
P

lu
g-

in

Android
Toolkit

S60
Toolkit

iPhone
Toolkit

Http

…

Call

Location

SMS

�����

Http

…

Call

Location

SMS

� ���������

Http

…
…

 �! "$#$%'&()$*+()-,-.

Fig. 5. MobiVine Plugins

</qualifiedClassName>
<exceptionList>

javax.microedition.location.LocationException
...

</exceptionList>
<runtimeExceptionList>

java.lang.SecurityException

...
</runtimeExceptionList>

<propertyList>
<property>
<name>preferredResponseTime</name>

<description>Preferred max. response time </description>
<dataType>int</dataType>

<allowedValues> ... </allowedValues>
</property>

...
</propertyList>

</method>

In the listing above, binding of the interface for S60 platform is captured. It
contains information about the class that implements the proxy, and the list of
exceptions that are thrown on this platform. There are also various properties
specific to S60, such as the preferred maximum response time required internally
by the interface for polling of updates. Each of these properties can be further
qualified by a default value and a set of allowed values on this platform.

3.2 M-Plugins

An important software engineering consideration from MobiVine’s perspective is
to make the proxies available in the existing toolkits, rather than propose a new
development environment altogether. The gap between M-Proxies and an existing
toolkit is bridged by a M(obiVine) Plugin. A plugin, by definition, is a package for
extending a software, without explicitly requiring access or modifications to the
underlying code base of the software. As shown in Figure 5, a plugin is developed
for each platform, and supports the following four features:

(1) M-Proxy Visibility. A plugin reads and parses all three planes of a proxy and
‘seamlessly’ integrates the proxy in the toolkit set-up, i.e. makes it visible at all
places where toolkit allows embedding of platform interfaces in the application.

(2) M-Proxy Presentation. Once a developer selects a proxy, M-Plugin presents a
dialog box containing all parameters, properties, and corresponding description,
possible and default values, etc. as described in the proxy structure.

(3) M-Proxy Configuration. M-Plugin enables configuration of a proxy by allowing
user to make selections and provide values for variables and properties in the dialog
box. It also generates code for invoking the configured proxy interface taking into
consideration all user inputs, and offers preview of the generated code.

(4) M-Proxy Embedding. A plugin ‘embeds’ the implementation artifacts of a
chosen and configured proxy within the application being created. This task can
be dependent on the semantics of the platform. For example, the S60 platform
requires the application to be bundled as a single J2ME MIDlet suite. In this case,
the proxy binding jar(s) are merged with the application jar before deployment.

3.3 Other Features

Enterprise or third-party application developers can utilize the MobiVine archi-
tecture by creating proxies and plugins for their desired platforms and interfaces,
and churning out rich, easy-to-port mobile applications. For them, apart from
handling diversity of platform interfaces, the MobiVine layer acts as a gateway for
enhancing the entire application development process:

Proxy Enrichment. A proxy can be enriched by adding extra functionality
on top of the native one. For example, proxy for fetching location information can
be made to offer output in various formats - radians, degrees, etc. Similarly, proxy
for invoking ‘Call’ can provide the utility for coordinating the number of retries
in case the callee is unreachable. Security and other policy modules can also be
added to provide a layer of trust, authentication and access control.

Extension. The MobiVine architecture can be easily extended to absorb new
platforms. In this case, if the semantic and syntactic planes already exist for
other platforms, one requires to publish only the binding artifacts for proxies
corresponding to a new platform. Moreover, as the proxy structure remains same
across platforms, a common proxy interpretation routine can be used to develop
plugins for different platforms.

In practice, proxies should be developed for an interface that exists on more
than one platform, and not necessarily on ‘all’ platforms. This removes the
requirement of the proxy set being determined by the least common denominator
of functionalities across different platforms.

4 Implementation

In this section, we consider three mobile middleware platforms - Android, Nokia
S60 and Android WebView, and describe an implementation of our proposed

architecture. Whereas the first two platforms enable creation of native mobile
applications in the form of Android projects and J2ME MIDlets respectively, the
last one is an Android implementation of the WebKit platform [15], and is used
to render mobile Web applications developed in HTML and JavaScript. For each
platform, we implemented proxies for various platform interfaces, and created plug-
ins that embed these proxies in the corresponding middleware set-up.

4.1 M-Proxies

As outlined earlier, each proxy is a structured component, capturing information
about the consistent, abstracted interfaces as per the three planes presented in
Section 3. For this purpose, we designed five Schemas in the XML format -
one for handling the semantic plane, one each for handling Java and JavaScript
styles at the syntactic plane, and two at the implementation plane for binding
Java (for S60 and Android), and JavaScript (for WebView). Fragments of XML
documents corresponding to these Schemas were presented in Section 3. Due to
space constraints, we do not detail the full Schema here.

On Android and Android WebView platforms, proxies were developed for four
interfaces - Location, SMS, Call and Http interaction, using the Java packages
provided in the Android SDK release m5-rc15. For Location proxy, we used the
android.location package, android.telephony.gsm package for the SMS proxy
and org.apache.http package for the Http proxy, while the phone call proxy was
implemented using the android.telephony.IPhone class. On the other hand, for
S60, proxies were created for three interfaces - Location, SMS and Http interaction.
Call proxy could not be created in this case because the core functionality was
not exposed on the S60 platform. All proxy modules were developed on top of
Nokia S60 3rd Edition SDK for Symbian OS, supporting Feature Pack 2 for MIDP
(Beta release). For Location, we made use of the javax.microedition.location

package, while the SMS and Http proxies were implemented based on the
javax.wireless.messaging and javax.microedition.io.Connector packages
respectively.

For each proxy, creating implementation modules to expose abstracted
interfaces required working on top of the native platform ones. While this can
be done using the classical notion of wrapper code, in the case of M-Proxies, the
following efforts require special mention:

Handling platform specific attributes as proxy properties. As discussed,
any platform-mandated information should not form part of a common API, but
should still be provided to the implementation module for that platform. In M-
Proxies, this is enabled through a generic setProperty() method. On Android,
for example, an instance of the LocationManager class is obtained by specifying
the name of the system service, ‘Location Service’ in this case, for an application
context. Rather than passing application context as input parameter in the API,
we provide it separately through the setProperty() method available with each
proxy. Similarly, on S60, an instance of the LocationProvider class is obtained
by passing criteria such as desired accuracy, preferred response time, etc. as

IB
M

 India R
esearch Lab, N

ew
 D

elhi

IB
M

 C
o

n
fid

en
tial

SmsManager

Properties …

sendTextMsg (…,
callback);

Android Platform

Java Interface

Class SmsWrapperFactory

function createSmsWrapperInstance() { … }

Class SmsWrapper

function setProperty (key, value);

function sendTextMsg (…..) {

callBackObj = new Callback();

SmsMgr.sendTextMsg (…., callBackObj);

}
function callback () {… }

function getNotifications (notifId) { … }

WebView Context

function SmsProxy () {

var swi = createSmsWrapperInstance ();

function setProperty (key, value) {

swi.setProperty (key, value);

}

function sendTextMsg (…., callBack) {
id = swi.sendTextMsg (…);

notifHandler nH = new notifHandler (id, callBack);

nH.startPolling ();

}

}

function notifHandler (id, callBack) {

function startPolling () { …}

}

JavaScript SmsProxy

……

{Notification Objects}Id 1

List of NotificationsNotification Id

Notification Table

JavaScript To Java
Interface

1

2

2

2

2

3

3

3
3

Fig. 6. JavaScript Proxy Implementation

parameters in the native interface. However, as with Android, such S60 specific
criteria is not made a part of the common proxy API, albeit, included through
notion of properties in the implementation.

Handling callbacks on Android. The native callback mechanism on Android
is provisioned through the use of Intent and IntentReceiver classes that deal with
detection of events and taking appropriate action, respectively. On the other hand,
however, the proxy API for the proximity interface defines a ProximityListener ob-
ject that requires a specific callback method - proximityEvent - to be called when-
ever proximity is detected. Hence, while implementing the addProximityAlert

API on Android, we first create an ‘Intent’ for listening to ‘Proximity Alert’
events, and attach it to the LocationManager.addProximityAlert method on
the native Android platform. Thereafter, corresponding to this Intent, we define
an ‘IntentReceiver’ and pass the ProximityListener object to it. Now, whenever a
proximity alert event is detected by the Intent, it gets passed to the IntentReceiver,
where the listener’s proximityEvent() method is invoked. This way, the use of Intent
and IntentReceiver is hidden from the application developer, requiring her to deal
only with the ProximityListener object.

Creating Android WebView proxies. As mentioned before, Android
WebView renders applications written in Web content language, such as HTML
and JavaScript. To enable platform interfaces such as sendTextMessage and
getLocation within an HTML content, Android offers a generic API ‘add-
JavaScriptInterface()’ to add a Java object inside a WebView application, treat it
as a JavaScript entity, and use the same for invoking a native platform interface.
For example, with the help of this technique, a developer can provide an instance of
SMSManager in a WebView window and through it send text messages by accessing
the underlying sendTextMessage interface. Similarly, location information can be
retrieved and embedded within the display content through a LocationManager

object. We use this generic mechanism as the basis to implement JavaScript
proxies for the WebView platform, following a three-step procedure. Through a
schematic view of our implementation of sendTextMessage interface in the SMS
proxy (Figure 6), we illustrate these three steps:

1. Enabling notion of a JavaScript proxy object - In the WebView context, we
create ‘Wrapper’ Java classes that help connect a JavaScript proxy implementation

to the native Android platform. These classes are accessible in the JavaScript
domain through the addJavaScriptInterface() call. In the case of SMS proxy,
we define a SmsWrapper class, through which functionalities exposed by the
SmsManager on the Android platform are accessed. Whenever a SMS proxy
object is instantiated in the JavaScript domain, an instance of SmsWrapper class is
generated by invoking the SmsWrapperFactory class, and its handle is kept within
the JavaScript proxy instance (variable swi in Figure 6).

2. Exposing JavaScript proxy interfaces - JavaScript interfaces for the proxy
were implemented by invoking the underlying Java interfaces through the handle
of the SmsWrapper instance, i.e. swi. For example, to send a message, we use the
swi handle to call the sendTextMessage functionality on the Android platform.
Similarly, to set a property associated with the JavaScript proxy instance, we
go through the swi handle to set the property of the SmsManager on the
Android platform. Finally, exceptions thrown by the native interface invocation
are propagated to the corresponding proxy with the help of error codes, wherein
an error code is defined for each possible exception.

3. Providing support for callbacks8 - Towards this, the sendTextMessage

function in the JavaScript proxy object first passes all parameters, except the
callback information, to the corresponding sendTextMessage interface defined
in the SmsWrapper class. Here a new ‘Callback object’ is created that listens to
notifications from the Android platform. All notifications thus received are stored
within the WebView context using a Notification Table. The notifications in
this table are retrieved periodically by the JavaScript proxy instance with the
help of startPolling() function in its notifHandler object. To map notifications
received from the Android platform to an underlying invocation in the JavaScript
proxy domain, the swi handle makes use of the identifier returned as part of
invocation of the sendTextMessage interface.

4.2 M-Plugins

The current development tools for Android (including WebView) and Nokia S60
platforms are built as extensions to Eclipse9. Eclipse is a popular open source
meta application framework, that allows extensions to development platforms
using the concept of Eclipse plug-ins. Therefore, we use the Eclipse framework
to create MobiVine Plug-ins for these mobile platforms. Each MobiVine Plug-in
is composed of three main components, viz Proxy Drawer, Proxy Configuration
View and Platform Specific Extensions. All these components are next described
in fuller details.

Proxy Drawer. The Proxy Drawer is a store of proxies, containing both the
proxy representations and the associated implementation modules. Figure 7(a)
shows the proxy drawer, listing all implemented proxies for the S60 platform.

8 callback notifications received by an underlying Java object are not available to the
invoking call in JavaScript.

9 http://www.eclipse.org

IBM India Research Lab, New Delhi

IBM Confidential

Drawer
Snippets
View

Variables Properties

Source

Description

Fig. 7. (a) Proxy Drawer of MobiVine Plug-in. (b) Proxy Configuration Dialog

Proxies are organized in the drawer as categories, whereby each proxy is shown as
a category with the APIs of the proxy presented as items. Through the drawer,
any proxy API can be added to the code either by dragging and dropping the
corresponding item to the desired location, or by double clicking the item to insert
at the current cursor location. The MobiVine Proxy Drawer was implemented by
extending the Snippet Contributor plug-in of Eclipse, and offers a Snippets view
with drawers of items that can be dragged and dropped in a text or visual editor.
Contents of the drawer, i.e. proxies and APIs in the form of categories and items
respectively, are specified in plugin.xml file of the plug-in.

Proxy Configuration and Code Generation. The Snippet Contributor plug-
in allows specification of a handler class that generates the content to be embedded
on drag-and-drop action. The content itself can be unformatted text, formatted
text such as an XML or java code, or binary data based on needs of the target
editor. Configuration dialog to accept user inputs using M-Plugin’s handler class is
shown in Figure 7(b), for addProximityAlert interface on the S60 platform. While
parameters of the common proxy interface are presented under the Variables

column, S60 platform specific Properties are presented under the Properties

column. Associated default value, allowed values and description is also provided
for each parameter and property. For instance, from the snapshot we see the
allowed values for the powerConsumption attribute. Preview of generated code
considering all user inputs is available in the Source view.

Platform Specific Extensions. As mentioned earlier, the task of integrating
proxy binding modules with rest of the application can be dependent on the
semantics of the platform. MobiVine plug-in provides such platform specific
extensions to ease integration. For S60 and Android, these extensions deal with
absorbing the proxy implementation jars in the resource structure - including
classpath - of the corresponding projects. Further, for S60, functionality is also
provided to merge jars of all chosen proxies with the application jar before

deployment, since the platform requires the application to be bundled as a single
J2ME MIDlet jar. Finally, for the Android WebView platform, extensions are
provided for incorporating JavaScript proxy implementations within a WebView
project, as well as for injecting the associated Java ‘Wrapper’ objects through the
addJavaScriptInterface() calls, as discussed previously.

5 Evaluation

In the previous sections, we talked about the M-Proxy model and how it can be
seamlessly integrated into mobile application development environments. It is also
important, however, to evaluate the effectiveness of our approach based on some
software engineering principles and performance metrics. Towards this, we consider
the following questions:

(1) Is the code easily portable across multiple mobile platforms using proxies?

(2) Is it less complex to develop and debug mobile applications that include
platform functionalities through proxies?

(3) Is it easier to maintain code and migrate to new versions of the platforms?

(4) Is the application performance affected by the usage of proxies?

public class WorkForceManagement extends Activity
implements ProximityListener {

...
public void onCreate(...) {

// registering for proximity events
try {

LocationProxyImpl loc = new LocationProxyImpl();
loc.setProperty("context", this);
loc.setProperty("provider", "gps");
loc.addProximityAlert(latitude, longitude, altitude, radius,

timer, this);
} catch (Exception e) {

// Handle Android specific exceptions
}
...

}

public void proximityEvent(double refLatitude, double refLongitude,
double refAltitude, Location currentLocation, boolean entering) {
/* business logic for handling proximity events */
...

}
}

public class WorkForceManagement extends MIDlet
implements ProximityListener{

 ...
public void startApp(...){

 //registering for proximity events
try {

 LocationProxyImpl loc = new LocationProxyImpl();
 loc.setProperty(..);
 loc.addProximityAlert(latitude, longitude, altitude, radius,

timer, this);
} catch (Exception e) {

// Handle S60 specific exception
}

 ...
 }

public void proximityEvent(double refLatitude, double refLongitude,
double refAltitude, Location currentLocation, boolean entering) {
 /*business logic for handling proximity events*/
...

}
...

}

(a) (b)

Fig. 8. Code fragment for proximity alert using proxies on (a) Android & (b) Nokia S60.

We try to answer the above questions with the help of code fragments from the
work force management application described earlier in Section 2. These fragments,
captured in Figures 8 and 9, correspond to the invocation of addProximityAlert
API in the application through the proxy model.
Portability: Compared to code depicted in Figure 2, code using the proxy

model (c.f. Figures 8 and 9) is mostly similar as far as the interface usage

<script type="text/javascript" >
function JSInit(...) {

try {
// registering for proximity events
var loc = new LocationProxyImpl();
loc.setProperty("provider", "gps");
loc.addProximityAlert(latitude, longitude, altitude, radius, timer, proximityEvent);

} catch (ex) {
// Handle Android specific exceptions

}
...

}

function proximityEvent(refLatitude, refLongitude, refAltitude, currentLocation, entering) {
/* business logic for handling proximity events */
...

}
...

</script>

Fig. 9. Code fragment for proximity alert using JavaScript proxy on Android WebView

is concerned, and leads to portability not only across different platforms, but
also across languages. Here, our M-Proxies absorb the API differences inside the
implementation modules, and present a uniform interface to a developer. Further,
platform specific attributes are absorbed through a consistent setProperty()
method. Finally, as can be seen from the figures, now the code around the API is
also similar as both the inputs as well as the output attached to the API are same.
For example, the currentLocation object in proximityEvent() is of the same type
on both Android and S60 platforms, whereas without proxies, it refers to platform
specific objects that imbibe varying semantics and syntax.

Complexity: As shown by various fragments, the code on both Android and S60
using the proxy model (Figure 8) is much simpler and smaller compared to the one
without the proxy model (Figure 2). This is because the proxies have hidden the
complexity of using platform specific APIs from the developers, such as the one
related to the use of Intent and IntentReceiver classes for handling callbacks
on Android. Similarly, business logic for handling proximity alerts on S60 is now
concentrated at one place, instead of being scattered in the code presented in
Figure 2. Moreover, well-developed proxy modules can make the task of testing
and debugging an application a lot easier. For instance, proxy bindings can be
designed to efficiently handle exceptions on different platforms.

Maintenance: In the case of proxy model, any changes in the application
code around platform interfaces, such as addition of new features or business
logic, can be applied at the same place on different platforms since the code is
similar. This makes it easier to maintain an application ‘across the platforms’.
Looking from a different perspective, as mobile platforms evolve, new version of
a platform may have different APIs as compared to the previous versions. For
example, the new release 1.0 10 of Android platform takes a PendingIntent object
in addProximityAlert API, instead of an Intent object. In such scenarios, the
application code would normally need changes to take care of these differences.

10 See, http://code.google.com/android/documentation.html

IBM India Research Lab, New Delhi

IBM Confidential

0

20

40

60

80

100

120

140

160

T
im

e
(i

n
 m

s)

APIs on different mobile platforms

Without Proxy 53.6 15.5 52.7 78.4 120 91.6 141 140.8 15.6

With Proxy 55.4 17.3 55.8 80.5 121.7 91.8 146.8 148.5 16.1

addProximityAlert getLocation sendSMS addProximityAlert getLocation sendSMS addProximityAlert getLocation sendSMS

Android Android Android Android
WebView

Android
WebView

Android
WebView

Nokia S60 Nokia S60 Nokia S60

Fig. 10. Time taken for invoking APIs on Android, Android WebView and Nokia S60

However, using our approach, the differences can be absorbed inside proxies for
this version of the platform, thereby requiring no changes in the application. This
makes the application easier to maintain ‘as platforms evolve’.

Performance: MobiVine layer is primarily a design-and-development-time ar-
tifact, helping a developer embed M-Proxies in her application. The run-time
overhead of MobiVine with respect to an application is therefore restricted to the
cost of invoking platform interfaces through the M-Proxy model. We conducted
some experiments to measure this overhead. Towards this, Figure 10 shows the time
taken for invoking various APIs with and without proxies on different platforms,
where for each API we took an average of ten executions.

It can be seen from the figure that the overhead of proxy is a small fraction
of the corresponding native interface. This is because the additional code inside a
proxy (on top of invoking the underlying interface) is limited to a few extra calls
dealing with data-type conversions, platform specific attributes and other small
de-fragmentation logic. Considering the time a typical application spends in UI
interaction, business logic, etc., we conclude that the cost of using a proxy model
in most cases is negligible as compared to the total application runtime.

6 Discussion and Related Work

Mobile devices are becoming increasingly sophisticated, providing enhanced
performance, larger memory size as well as a number of new features such
as GPRS, Music Player, Camera, etc. Due to the pervasive nature of these
devices, innovative applications designed to run on them have the potential of
changing business processes and human-lifestyle in a number of profound ways.
While mobile phones and their underlying software have traditionally been closed
environments, changes are being brought about with the advancement of open

platforms such as Brew11, Symbian UIQ12 and Android. Software development
approaches specifically for mobile applications have been proposed; for example
[1] presents an agile development approach for mobile platforms. Numerous efforts
are also being undertaken in the realm of porting a desktop application to mobile
platforms. For instance, the Sun Java Toolkit for Connected Device Configuration
(CDC)[5] facilitates porting Java SE programs to mobile devices. Similarly, [2]
examines the ability of common desktop applications to gracefully handle error
conditions when ported to more unreliable mobile devices.

Fragmentation is the inability to “write once and run anywhere” [10].
Fragmentation in mobile applications is caused by several types of diversity: (1)
Hardware diversity, such as differences in screen parameters (size, color depth,
orientation, aspect ratio), memory size, processing power, input mode (keyboard,
touch screen, etc.), additional hardware (camera, voice recorder), and connectivity
options (Bluetooth, IR, GPRS, etc.). (2) Software Platform diversity in mobile
devices caused by factors such as differences in platform/OS (Symbian, Nokia
OS, RIM OS, Android, BREW, etc.), API standards (MIDP 1.0, MIDP 2.0,
etc.), optional/proprietary APIs, variations in access to hardware (e.g., full screen
support), maximum binary size allowed, etc. (3) Environmental diversity,
such as that in the deployment infrastructure (branding by carrier, compatibility
requirements of a carriers back-end APIs, etc.). Note that desktops do not have
hardware, software or environmental diversity of such scale; fragmentation in
desktop applications is thus much lower compared to mobile applications.

Standardization efforts have been undertaken to overcome mobile platform
diversity. For example, extensions to the Java platform have been proposed through
Java Specification Requests (JSRs) to support APIs for new features in mobile
devices. One such effort - JSR 24813 - is designed to provide a comprehensive set
of APIs for Mobile Service Architecture. Ideally, applications written for a device
based on standards such as Java ME as the software platform should work on
all devices supporting Java ME. However, in practice, different devices support
basic Java ME along with a select set of JSRs (decided independently by each
mobile OS/Platform developer), resulting in diversity even among these devices.
The Open Mobile Terminal Platform (OMTP) forum has launched a project, called
BONDI14, to drive a standardized approach for letting web applications access key
local capabilities on the mobile device, while provisioning a user controlled security
layer. Currently, most of these standardization efforts are fractured themselves,
with each effort being promoted by a set of vendors. The success of this approach,
therefore, remains to be seen in the long run.

A number of software solutions have been suggested in both the mobile as
well as the desktop world for dealing with fragmentation. This includes deriving
different versions of the application suitable for different platforms from a single
code base using techniques like meta-programming and automatic generation. A

11 http://brew.qualcomm.com/brew
12 http://www.uiq.com
13 http://jcp.org/en/jsr/detail?id=248
14 http://bondi.omtp.org/default.aspx

tool that supports this approach is the NetBeans Mobility Pack [9]. On the other
hand, [3] describes an automatic generator to develop UIs to fit different screen
sizes. One can also create applications by utilizing an abstraction library that
hides diversity among different APIs. OpenKODE [12] is a library containing
APIs for media and gaming applications that sits over Mobile OS and abstracts
resources to minimize changes when porting applications between Linux, Symbian
and Windows based platforms. Similarly, TWUIK [13] is a UI library for mobile
applications that enables a single UI to adapt to multiple devices. MobiVine layer
based on the structured M-Proxy model can be seen as a refinement of these
approaches by including platform specific attributes and enabling integration with
the application development offering of a middleware platform.

As mobile phones experience enhancements in functionality, features and
capability, there will be a desire to host services on the device itself that are
accessible by other mobile phone users, or more generally, by Web users. For
example, one could visualize a query to a cell phone regarding its real-time
information like current location and off-hook, on-hook status. An initial effort
in this direction is in [14] which talks about realizing Web service applications in
a smart space over devices such as mobile phones, PDAs, etc. Similarly, Celadon
[8] supports applications, users, and devices in mobile commerce spaces, while
providing a runtime and a tooling environment. Our M-Proxy model can be utilized
to design such spaces more efficiently by creating proxies for various features that
enable a mobile device to interact in these environments.

7 Conclusions and Future Work

To foster creation of rich mobile applications, popular platform vendors such
as Android, iPhone and Nokia S60 offer ‘interfaces’ to a) access information on
the mobile device (for e.g. user location), and b) invoke device capabilities (like
camera), from within the applications. In this paper, we presented MobiVine, a
middleware layer to handle fragmentation of such platform interfaces for mobile ap-
plications. We described MobiVine as consisting of two main components. The first
component, called ‘M-Proxies’, helps abstract heterogeneities in interfaces across
different platforms while binding to the underlying middleware stack. The other
component, called ‘M-Plugins’, helps integrate MobiVine with existing tooling and
deployment infrastructure. With the help of a prototype implementation for three
platforms - Android, S60 and Android WebView, we evaluated the effectiveness
of our approach based on various software engineering principles and performance
metrics.

In the future, we would like to extend MobiVine implementation to cover other
platform interfaces like those related to calendaring and contact list information,
as well as include other platforms such as iPhone. We also plan to make the
concept of proxy model broader by studying its applicability to other forms of
mobile heterogeneity, for instance screen size and resolution. Finally, we wish to
explore the usefulness of proxies in a converged network domain. For example, it
would be interesting to create proxies for enabling voice access to Web applications.

Similarly, proxies can be created to interact with various Web-offerings based on
the REST architecture [8].

References

1. P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J. Jlinoja, M. Korkala,
J. Koskela, P. Kyllnen, and O. Salo. Mobile-D: An Agile Approach for Mobile
Application Development. In Proceedings of OOPSLA 04, Vancouver, Canada,
October 2004.

2. M. Bigrigg and J. Slember. Testing the Portability of Desktop Applications to a
Networked Embedded System. In Proceedings of the Workshop on Reliable Embedded
Systems, 2001.

3. K. Gajos, D. Christianson, R. Hoffmann, T. Shaked, K. Henning, J. J. Long,
and D. Weld. Fast and Robust Interface Generation for Ubiquitous Applications.
In Proceedings of the Seventh International Conference on Ubiquitous Computing
(UBICOMP’05), 2005.

4. P. Grace, G. S. Blair, and S. Samuel. A Reflective Framework for Discovery and
Interaction in Heterogeneous Mobile Environments. SIGMOBILE Mobile Computing
and Communications Review, 9(1):2–14, 2005.

5. Sun Java Toolkit for CDC. http://java.sun.com/products/cdctoolkit/.
6. J. Kreku, M. Hoppari, T. Kestila, Y. Qu, J. Soininen, and K. Tiensyrja. Application

- Platform Performance Modeling and Evaluation. In Proceedings of the Forum on
Specification, Verification and Design Languages, 2008.

7. L. Marucci and F. Paternò. Supporting Adaptivity to Heterogeneous Platforms
through User Models. In Proceedings of the 4th International Symposium on Mobile
Human-Computer Interaction, pages 409–413, London, UK, 2002. Springer-Verlag.

8. S. McFaddin, D. Coffman, J. Han, H. Jang, J. Kim, J. Lee, Y. Moon,
C. Narayanaswami, Y. Paik, J. Park, and D. Soroker. Modeling and Managing
Mobile Commerce Spaces using RESTful Data Services. In Proceedings of the Ninth
International Conference on Mobile Data Management, 2008.

9. Resolving Java ME Device Fragmentation Issues Using NetBeans Mobility.
http://www.netbeans.org/kb/60/mobility/javame-devicefragmentation.html.

10. D. Rajapakse. Techniques for De-fragmenting Mobile Applications: A Taxonomy. In
Proceedings of 20th Intl. Conf. on Software Engineering and Knowledge Engineering
Conference (SEKE’08), July 2008.

11. H. Safa, H. Artail, and R. Shibli. An Abstract Model for Supporting Interoperability
in Mobile Ad-hoc Networks. In Proceedings of the IEEE International Conference
onWireless and Mobile Computing, Networking and Communications, 2006.

12. N. Trevett. OpenKODE: An Open Standard for Mobile Application Portability.
http://www.khronos.org/files/openkode whitepaper.pdf.

13. TWUIK: Powerful UI Technology for your JavaME Applications.
http://www.tricastmedia.com/twuik/.

14. J. van Gurp, C. Prehofer, and C. di Flora. Experiences with Realizing Smart
Space Web Service Applications. In Proceedings of Consumer Communications and
Networking Conference, (CCNC’08), January 2008.

15. The WebKit Open Source Project. http://webkit.org/.
16. WebSphere Everyplace Mobile Portal. http://www01.ibm.com/software/pervasive/

ws everyplace mobile portal enable/.

