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BrownMap: Enforcing Power Budget in Shared Data Centers

Akshat Verma Pradipta De Vijay Mann Tapan Nayak Amit Purohit
Gargi Dasgupta Ravi Kothari

Abstract

Shared data centers that use virtualized servers as build-
ing blocks (e.g., clouds) are emerging as an exciting
technology that provides a computational platform for
customers without incurring a steep setup cost. The
providers of a shared data center, however, need intelli-
gent mechanisms to deal with bursts in resource require-
ments as well as failures that may significantly reduce
resource availability. In this work, we investigate mech-
anisms to ensure that a shared data center can operate
within a power budget, while maximizing the overall rev-
enue earned by the provider. We present theBrownMap
methodology that is able to ensure that data centers can
deal both with outages that reduce the available power
or with surges in workload.BrownMapuses automatic
VM resizing and Live Migration technologies to ensure
that overall revenue of the provider is maximized, while
meeting the budget. We implementBrownMapon an
IBM Power6 cluster and study its effectiveness using a
trace-driven evaluation of a real workload. Both theo-
retical and experimental evidence are presented that es-
tablish the efficacy ofBrownMapto maximize revenue,
while meeting a power budget for shared data centers.

1 Introduction

The inevitability of power outages in a power grid due
to the complex nature of the grid is slowly being real-
ized [4]. In the year 2007, more than 100 significant
outages had been reported in North America [21]. The
gap between the creation of new power generation units
and the increasing growth-driven demand in emerging
economies make the problem even more acute in devel-
oping countries. A 2008 report by Stratfor [29] indi-
cates that the growth in GDP outpaces growth in power
production in China by a factor of5 and in India by a
factor of 2. As a result of the power shortages, enter-
prises depend on back-up generators to deal with out-
ages. However, the backup power available is typically
much smaller than the demand leading to another electri-
cal condition called powerbrown-outs, i.e., reduction in

the power available to a data center.

A brownout is a temporary interruption of power ser-
vice in which the electric power is reduced, rather than
being cut as is the case with a blackout. For example,
the voltage drops from 120 watts to 98 watts or less that
are available to IT equipment. Major metropolitan cities
in the developed world as well experience brownouts
due to lower power availability. In the year 2007,33
power outages happened in North America leading to
a reduction in the available power supply [21]. Over-
loads on the electrical system or natural calamities like
storms etc. can disrupt the distribution grid, triggering a
brownout. These can last anywhere between minutes to
a few hours depending on their severity. In developing
countries like India, brownouts may last for days due to
insufficient energy supply especially during the summer
season. In some cases, a brownout is actually deliber-
ate, when voltage reductions are undertaken when it is
sensed that a disruption in the grid may lead to serious
problems. Rather than instituting rolling blackouts, the
electricity distribution company may temporarily reduce
the voltage to some customers in an attempt to prevent
a collapse of the grid and to allow reserves of power to
accumulate again.

Some surveys [1] predict that unless corrective actions
are taken, power failures and limits on power availabil-
ity will affect data center operations at more than90% of
all companies within the next five years. Power grids
have started differential pricing to deal with low fre-
quency problems. For example, the KSE grid in India
charges Rs570 per KiloWattHour (KwH) for any addi-
tional unit consumed over and above the allocated quota
if the supply frequency dips below49 Hz whereas the
regular charges at50 Hz are around Rs4/KwH [31].
Hence managing the impacts of a brown-out and recom-
mending actions to deactivate appropriate services with
the least financial impact to Data Center business is crit-
ical. The ability to gracefully deal with brownouts also
give Data Centers the opportunity to enhance their image
as good corporate citizens.

Creating a power budget for an ensemble of blade [24]
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or rack servers [14] has been addressed earlier. The goal
in these cases is to find the aggregate peak power con-
sumption and use it as a budget. If the actual power
exceeds the estimated budget, a throttling mechanism is
used at each server. The emergence of virtualization in
data centers make such application-unaware server throt-
tling of limited use. Multiple virtual machines running
applications with different SLAs (and utility) may be co-
located on a common server and a server-based power
management mechanism is unable to differentiate be-
tween these applications. Further, server throttling does
not leverage virtual machine migration, which is an ef-
fective tool for power management. Finally, a brownout
may significantly reduce the available power to a data
center and due to the limited dynamic power range of a
server [33, 32], throttling may not be able to reduce the
required amount of power.

1.1 Contribution
BrownMap is designed for data centers to deal with
brownout scenario, where a substantially lower power
budget may be available due to a power outage. It can
also help a data center to deal with power surges that
arise due to workload variability. The contribution of our
work is two-fold:
(i) We present the design and implementation of a run-
time BrownMappower manager that helps a shared data
center deal with brownouts. The power manager uses
a distributed monitoring and reconfiguration framework.
Our design has minimal monitoring overheads and re-
configures the server cluster to meet the power budget
in a very short duration. TheBrownMaparchitecture is
robust enough to deal with noise in monitored data and
scales well with the size of the server cluster.
(ii) We present theBrownMapplacement methodology
to find the configuration that maximizes the utility earned
by the applications, while meeting the power budget. The
methodology uses a novel divide and conquer method-
ology to break the hard power budgeting problem into
Server Selection, VM Resizing andVM Placementsub-
problems. We use a iterative procedure that leverages
the nature of the power and utility curves to find a con-
figuration that is close to the optimal for most practical
scenarios. On a real testbed using production traces, we
show thatBrownMapmeets the reduced power budget in
the order of minutes and can bring the power down by
close to50% for a10% drop in utility.

2 Model and Preliminaries

We now formally define the brownout problem addressed
in this paper.

We consider a shared data center withN applications

Ai hosted onM serversSj . Each application is run
in a dedicated virtual machine (VM) or logical partition
(LPAR) and has a utility value that is a function of the re-
source allocated to the LPAR (Utility(xi)). We use the
terms VM and LPAR interchangeably in this work. The
data center experiences a brownout for the nextT hours
with the available power reduced toPB. The goal of the
Power Manageris to re-allocate resources to each appli-
cations, migrate applications (virtual machines) between
servers, and switch servers to low power states in order
to meet the power budget. Further, we need to ensure
that the utility is maximized while meeting the budget.
Formally, we need to find an allocation (or VM Size)xi

for each applicationAi and a mappingyj
i on each server

Sj s.t.

arg max
x,y

N∑

i=1

Utility(xi) (1)

M∑

j=1

Powerj(x,y) < PB, ∀Sj

N∑

i=1

yj
i xi ≤ Cj , ∀Ai

M∑

j=1

yj
i = 1

(2)whereUtility(xi) is the utility earned by applicationAi

if it is assignedxi resources,Powerj(x,y) is the power
drawn by serverSj for the given resource assignment and
placement, andCj is the capacity of the serverSj . Var-
ious benchmarks exist to capture the capacity of various
server models. In this work, we use the IDEAS RPE2
value of a server to denote its capacity [27].

2.1 Deriving VM Utility for multi-tier ap-
plications
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Figure 1: Utility Computation for multi-tier applications

We have used a utility maximization framework to cap-
ture the importance of each application to the shared data
center. The utility may be computed based on the rev-
enue earned by the data center by each application. A
utility based framework is general enough to capture var-
ious other objectives like strict priority and fairness.

Our framework assigns resources to each VM and
hence needs a utility function to be associated to individ-
ual virtual machines. However, many data centers run
services composed of multiple applications, which may
again be multi-tiered and run from two or more LPARs.
A service can easily be broken down into the applications
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and the utility for each application can be estimated. For
example, an e-Commerce site would have applications
for browsingand shopping. These applications would
typically run on separate set of VMs in a large data center
for ease in application support and maintenance. Hence,
it is relatively straightforward to assign utility to each
application, which serves exactly one type of requests.
However, utility functions are still defined for the com-
posite application and not for each tier separately. A
typical3-tiered application has a front end web server, a
middle tier application server and a backend DB server.
In order to apply our framework, we need to derive the
utility functions for each application component (or VM)
from the utility function of the composite application.

We have designed a proportional utility assignment
method to derive the utility for each application compo-
nent. Consider an example scenario with a 2-tiered ap-
plication in Fig. 1. TheUTILITY function captures the
utility derived by the composite application for a given
throughput. TheRESOURCE function captures the
resource consumption of each tier (or VM) for a cer-
tain application throughput. Resource functions for each
tier can be obtained using monitored data that map re-
source utilization in each component VM to the applica-
tion throughput. In cases where an application may have
multiple types of requests, the functions are based on av-
erage estimates.

In order to apply our methodology, we derive the utility
for each VM from the applicationUTILITY function
andRESOURCE function for the VM in the follow-
ing manner. We divide the utility derived by the applica-
tion to its components in proportion to the resource used.
Hence, in Fig. 1, we set the utility ofComponent1 at
throughputTi as x1

x1+x2

∗ Ui. The above assignment en-
sures that the sum of the derived utility of all components
of an application at a given throughput equals the actual
utility of the application at the throughput.

For multi-tier applications, it is also desirable that the
resource assigned to each component by any optimiza-
tion methodology should be such that no one compo-
nent becomes a bottleneck. To consider the example in
Fig. 1 again, if LPAR1 has a resource assignedx1 and
LPAR2 has resource assigned greater thanx2, any ad-
ditional resource assigned to LPAR2 abovex2 does not
lead to an increase in the throughput of the application.
This is because the application is limited by the lowest
resource allocation among all components (in this case
RESOURCE1). We will later show (Sec. 4) how our
optimization methodology satisfies this proportional as-
signment property as well.

3 BrownMap Architecture

In this section, we describe the overall architecture of the
BrownMap Power Manager.

BrownMap Power Managercomputes a new sizing and
placement for the Virtual Machines (VMs) for a fixed du-
ration termed as the consolidation interval (e.g., 2 hours).
The key modules in the BrownMap Power Manager, as
shown in Fig. 2, are (i)Monitoring Engine, (ii) Workload
Predictor, (iii) Profiling Engine, (iv) Placement Gener-
ator, and (b)Reconfig Manager. The Monitoring En-
gine periodically collects (a) system parameter values
from each logical partition (LPAR) as well as the Vir-
tual I/O partition present on each physical server in the
shared data center and (b) Application usage statistics,
and stores them in the Monitor Log. Thepower manage-
mentflow is orchestrated by aController. TheController
executes a new flow on an event trigger, which could be
either a change in the power budget or the end of the pre-
vious consolidation interval. On receiving an event trig-
ger, it invokes theWorkload Predictor, Profiling Engine,
Placement Generator, andReconfiguration Managerin
the given order to coordinate the computation of the new
configuration and its execution. The main steps in the
flow of the BrownMap technique are (i) estimation of
the resource demand for each VM in the next consolida-
tion interval by theWorkload Predictor. (ii) updation of
the VM resource demands to account for VIO resource
usage based on the profiles of each application by the
Profiling Engine, (iii) re-sizing and placement of VMs
based on their utility models and a power budget by the
Placement Generator, (iv) execution of the new configu-
ration by theReconfig Manager. We now describe each
component of our architecture separately.

3.1 Monitoring Engine
The monitoring engine periodically collects resource us-
age statistics for all partitions, including the management
partition, on a physical node. For IBM’s Power Hyper-
visor (pHyp) the management partition is called the Vir-
tual I/O (VIO) Server. The monitor agent on each par-
tition collects utilization data for CPU, active memory,
network traffic, and I/O traffic, and feeds it back to the
monitoring engine. The data is sampled every 30 sec-
onds, and periodically the aggregate log files are pushed
to aMonitor Log, implemented as a relational database.
The monitored data can be accessed from this database
by the other modules. The script based monitor agent
running on each partition is low overhead, and consumes
less than 0.1% of the resources allocated to a partition.

Monitoring the resource usage in a virtual partition is
challenging because the resources dedicated to the parti-
tion can change dynamically under certain settings. For

3



VM VMVIO

VM VMVIO

Workload
Predictor

Profile DatabaseProfiling Engine

Power Budget

Utility Model

Server Farm

Server−2

Server−1

Monitor Log

CONTROLLER

Placement
Generator

TriggerBrownOut Power Manager

Monitoring Engine

Raw VM Demand

Demand

Real VM

New Configuration

Reconfig Manager

(i)
(ii)

(iii)

(iv)

Figure 2: BrownMap Power Management Architecture

example, the number of CPUs allocated to a partition
can vary over time. Therefore, the monitor agent must
track the resources currently used by the partition, which
is called the entitlement of the partition. The actual re-
source usage, for CPU and memory, is percentage uti-
lization with respect to the entitlement. Note that the
CPU entitlement for each LPAR in a Power6 virtual envi-
ronment can be a fraction of the total CPU pool available
on the physical server. Many of the modern processors
are also capable of scaling the voltage and frequency in
order to optimize power consumption, which is known
as Dynamic Voltage and Frequency Scaling (DVFS). If
DVFS is enabled, the reported entitlement takes into ac-
count the scaled CPU frequency. Active memory statis-
tics reports changes in the memory utilization while an
application is executing. Network statistics collects data
on number of bytes and packets transferred. I/O statis-
tics collects data for the disk activities, which could be
storage attached over SAN. The resource usage statistics
of the VIO are similarly monitored and logged. It is im-
portant to note that the VIO performs work on behalf of
individual LPARs, which should be accounted back to
the LPAR. The profiling engine, discussed later ensures
that the LPAR resource usage captures the work done by
VIO on its behalf.

3.2 Workload Predictor
The goal of theWorkload Predictoris to estimate the raw
resource (CPU, memory, network, disk) demand for each
VM in the next consolidation interval. It has been ob-
served in data centers that some workloads exhibit nice
periodic behavior and some do not follow any particu-
lar pattern [34]. Periodic workloads can be predicted in

longer horizons with significant reliability using a long
term forecast. However, the prediction error increases
rapidly for non-periodic workloads as the horizon in-
creases. We use a two-pronged strategy in the design of
our Predictor to handle both periodic and non-periodic
workloads. We make a short-term as well as a long term
prediction and use both to estimate the resource usage.

A popular method for deciding periodicity is the auto-
correlation function and the peaks in the magnitude spec-
trum [15, 3]. Once the periodicity for a workload is de-
termined, we use it to make a long term forecast. The
short-term prediction is based on polynomial approxima-
tion to minimize the least-square error. We then use a
weight parameter to give weightage to the long term and
short term forecasts. Let us divide the usage history into
a sequence of time periods and we consider the lastP
periods for estimation. Our goal is to forecast the next
K usage values based on lastn samples of the usage his-
tory, wheren = P ∗p, p is the number of samples in the
estimated time period. The resource demand at(n+k)-th
interval is predicted as

D̂n+k = (1−α)∗
1

P

P∑

i=1

yi∗p+k + α∗fp(yn, yn−1, . . . , yn−Ns−1), k = 1

(3)where yi∗p+k are the corresponding usage values at
the kth sample of thei-th cycle, fp is the short
term prediction based on lastNs samples andα
is the weight parameter. Note that1

P

∑P

i=1
yi and

fp(yn−1, yn−2, . . . , yn−Ns
) represent the long and short-

term components of the forecasted value, respectively.
We setα as1 for workloads without periodicity and0.5
otherwise. For the resource usage histories we consid-
ered, we found that second order is sufficient for rea-
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sonable approximation, and the error increases asK in-
creases. Finally, the default value ofP is set such that
the number of periods cover a week, which has been ob-
served to be sufficient to determine periodicity in data
centers [34].

3.3 Profiling Engine
I/O processing for virtual I/O adapters are performed by
the Virtualization layer (Virtual I/O Server or VIO in
pHyp and dom0 on Xen) on behalf of individual LPARs.
This redirection leads to a CPU overhead for I/O pro-
cessing [8] that needs to be accounted back to the LPAR
performing the I/O. To take an example, the CPU over-
head in VIO due to an LPAR having a network activity of
600KBps on an IBM JS-22 BladeCenter is around4%
of 1 4.0GHz Power6 core (Fig 3(b)). TheProfiling En-
gineprovides an estimates of these VIO CPU overheads
and accounts it to the LPAR in order to create the real
resource demand for each LPAR.

TheProfiling Engineuses aProfile Databasethat cap-
tures the relationship between hypervisor CPU overhead
and the disk and network activity in an LPAR for each
physical server type (the two curves in Fig 3). This pro-
file is created using calibration runs on each server model
in the datacenter. During thepower managementflow,
theProfiling Engineuses theProfile Databasealong with
the network and disk activity demand provided by the
Workload Predictorto estimate the VIO overhead due to
each LPAR. The VIO overhead is then added to the raw
CPU demand of the LPAR to estimate the real resource
demand for each LPAR in the consolidation interval. The
real demand is used by thePlacement Enginefor VM
sizing and placement.

The second job of theProfiling Engineis to provide
an estimate of the power for any configuration that the
Placement Generatorcomes up with. The power drawn
by a server can not be accurately estimated only from
the expected CPU utilization of the server for heteroge-
neous applications, as it also depends on the nature of the
application [32]. TheProfiling Engineuses WattApp, a
power meter that has been designed for heterogeneous
applications [18]. WattApp uses power profiles for each
application on a server, which is then used to estimate the
power drawn by a server for running a mix of applica-
tions. The individual power profile for each application
is also stored in theProfile Database.

3.4 Placement Generator
The Placement Generatortakes as input the predicted
real resource demand (CPU, Memory, I/O) and the appli-
cation profiles from theProfiling Engine, utility models
for the workloads, the previous allocation and the user

specified power budget. Based on resource demands and
the utility accrued from each application, it computes a
a new placement map, which specifies which applica-
tions reside on which servers and occupy what capacity
(i.e size) of the host server. Further, based on the ap-
plication and server profiles, theV IO layer is also re-
sized. The power consumed by this new placement map
is now within the power budget and maximizes the over-
all utility. The details of the placement methodology im-
plemented by thePlacement Generatorare detailed in
Sec. 4.

3.5 Reconfiguration Manager
The Reconfiguration Managertakes as input the new
LPAR entitlements and placement provided by the
Placement Engineand moves the data center to this
new configuration in the most efficient manner possible.
LPAR migration is an expensive operation (1 to 2 min-
utes for active LPARs) and it is important to minimize the
time taken to reconfigure the data center. Further, since
LPARs may both move in or out of a server, it is possi-
ble that there may not be available resources for an LPAR
moving in till some LPARs are moved out. This may cre-
ate temporary resource capacity issues leading to failures
during reconfiguration. The goal of theReconfiguration
Manager is to (a) minimize the total time taken to re-
configure and (b) avoid any temporary capacity failures
due to migration. TheReconfiguration Managerspawns
a new process for each server that has at least one LPAR
being migrated from it. This allows the reconfiguration
to scale with the number of servers involved in the re-
configuration. In order to overcome any capacity issues
during migration, we reduce the allocations on LPARs
before starting the migration. This ensures that there is
no resource allocation failure when an LPAR is migrat-
ing into a physical node. The LPAR is resized back to its
correct resource allocation, as soon as the target server
has finished migrating any LPARs that are moving out
of it. Once a blade has no LPARs running on it, theRe-
configuration Managereither switches off the blade or
moves it toNap mode [13], if available on the server .

4 BrownMap Sizing and Placement
Methodology

We now present theBrownMap sizing and placement
methodology implemented by thePlacement Engine.
The problem of allocating resources to each VM in or-
der to meet a power budget, while maximizing the over-
all revenue (Eqn. 2), requires one to solve three prob-
lems at the same time: (i) Selection of active servers that
meet the power budget, (ii) Resource Allocation for each
VM (xi) on the available capacity of the servers and (iii)
Placement of VMs on active physical servers (yj

i ). One
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Figure 3: VIO Overhead with (a) LPAR Disk Activity and (b) LPAR network activity

may observe that the resulting problem is an NP-hard
problem, as bin packing becomes a simple case of this
problem.

In order to understand the problem, observe that the
optimization problem evaluates two functions, namely
Power andUtility as a function of VM sizes (xi) and
their placement (yj

i ). As noted in [32], power consump-
tion by a server is not determined solely by the server’s
utilization but is also dependent on the nature of applica-
tions running on the server. Hence, estimating the power
drawn by a heterogeneous mix of applications in a shared
data center is a challenging problem. Since a closed form
for an objective function namely power does not exist,
off the shelf solvers can not be used. The Utility func-
tion is again a derived measure and is dependent on the
SLA parameter of the application. Typical utility func-
tions would satisfy the law of diminishing marginal re-
turns and may be approximated by a concave curve. The
value of the SLA parameter depends on the resource as-
signed to the application and is typically a convex func-
tion (e.g, Fig. 5(b)). Hence, the nature of the utility curve
with the resource is a function with potential points of in-
flection making it a difficult problem to solve.

We now present an outline of ourBrownMapmethod-
ology that solves this problem using an iterative proce-
dure.

4.1 Outline of BrownMap

SERVER SELECTION

POWER BUDGET

VM SIZING

AVAILABLE CAPACITY

VM PLACEMENT

VM SIZES
SERVER
OPERATING
POINTS

POWER
BUDGET

MET?

PLACEMENT

NO

REDUCED

POWER
BUDGET

END

Figure 4: BrownMap Placement Algorithm Flow
TheBrownMapmethodology is based on a ’divide and

conquer’ philosophy. We divide this hard problem into

three sub-problems, namely Server Selection, VM Siz-
ing and VM Placement. One may not that the feasible
space for each sub-problem depends on the solution of
other sub-problems. For example, theServer Selection
problem can predict whether the power budget can be
met, only if the placement and sizing of the applications
are known. To address this problem, we assume a fixed
solution for the other two sub-problems, while finding
the best solution for each sub-problem. We then iterate
over the solution till we can find a placement and sizing
that meets the power budget. Our methodology lever-
ages a recent power modeling work Wattapp [18], which
is able to predict the power drawn by a heterogeneous
mix of applications running on a shared data center, for
convergence. The overall iterative flow ofBrownMap, as
shown in Fig. 4, consists of the following steps.

• Server Selection: In this step, we use the avail-
able power budget to pick the most power efficient
servers within the power budget for an average ap-
plication. We leverage the Order Preservation prop-
erty from an earlier work [32] that allows us to rank
servers with respect to power efficiency in an ap-
plication oblivious manner. Once we identify the
active servers, we compute the aggregate server ca-
pacity available to the applications.

• VM Sizing: This step takes the available capacity as
input and computes the best VM size (xi) for each
application that maximizes the utility earned within
the available capacity.

• VM Placement: In this step, we use the servers and
their operating points and VM sizes to compute the
best placement (yj

i ) of VMs on servers. We use the
history-aware iDFF placement method presented in
an earlier work [32].iDFF is a refinement of the
First Fit Decreasing bin packing algorithm that also
minimizes the number of migrations. For further
details of this step, the reader is referred to [32]

• Iterate: If the Placement method is able to place all
the applications, we use WattApp [18] to estimate
the power drawn. If the estimated power exceeds
the budget or the applications can not be placed in
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the previous step, we iterate from the server selec-
tion step with a reduced set of servers.

4.2 Server Selection
We define theServer Selectionproblem as finding a sub-
set of servers and their operating points such that the
power drawn by the servers is within a power budget.
Further, the total server capacity available for hosting
VMs is the maximum possible within the power budget.
Note that the power drawn by a server is not determined
solely by the CPU utilization but also on the application
mix running on the server [10], [26], [32], [33], [18].
Hence, the power drawn by a set of servers can not be
represented as a closed function of the capacity used, as it
depends on factors other than server capacity. However,
we have noted in [32] that an ordering can be established
between different servers based on their power efficiency
for any fixed application and this ordering holds across
applications.

We use theOrdering propertyto order servers and cre-
ate a power vs capacity curve in Fig. 5(a). We replace the
original curve with a convex approximation and find the
server capacity that meets the power budget. The convex
approximation is employed for the iterative convergence.
We use this selection of servers and operating points for
VM sizing and placement. Once we get an allocation of
VMs to servers and their sizes, we estimate the actual
power consumed by the servers using the WattApp meter
[18]. If the estimated power drawn exceeds the power
budget, we move down on the convex power curve and
iterate again.

4.3 VM Sizing
The VM Sizing problem takes as input an aggregate
server capacity available to host a set of VMs. Further,
for each VM, a model of utility as a function of the SLA
parameter of the VM and a model of SLA parameter ver-
sus resource assigned to the VM is taken from the Pre-
Processing step. We use the utility and resource models
to create a model of utility versus resource allocated for
each server. We startVM Sizingby allocating to each VM
the maximum resource required by it in the next consol-
idation interval. We then iteratively take away resources
from the VM with the least slope of the Utility-Resource
curve (or the VM which has the least drop in utility for
a unit decrease in resources allocated). To take the ex-
ample in Fig. 5(b), we first take away resources from the
first VM (with the least slope). In the next step, the third
VM has the least slope and we reduce its resource alloca-
tion. TheVM sizingmethod terminates when (a) the total
capacity used by the VMs equals the capacity given by
the server selection process and (b) the selected point on
each curve is either a corner point or the slope of all the

non-corner points are equal (Fig. 5(b)). The first prop-
erty ensures that we meet the power budget assuming the
Server Selectionprocess is accurate. The second prop-
erty ensures that the overall utility drawn by the VMs
within the power budget can not be increased by making
small changes. It is easy to see (proof omitted due to lack
of space) that the resultant solution has the following op-
timality property.

Theorem 1 The VM Sizing Method finds a resource al-
location that is locally optimal. Further, if the utility ver-
sus capacity models for all VMs are concave, then the
resource allocation is globally optimal.

We note that the VM sizing for one VM is independent
of other VMs. Hence, if an application has multiple com-
ponents, with each component hosted in a separate VM,
the sizing may lead to resource usage. A desirable prop-
erty is that each component of an application should be
sized to achieve the same throughput. In order to achieve
this, we add another condition to the convergence. If two
VMs compete for a resource and have the same slope
on the utility-capacity curve, we assign the resource to
the VM with a lower achieved SLA value. This property
coupled with the utility breakup for multi-tier applica-
tions (Sec. 2.1) leads to the following proportional allo-
cation property between VMs belonging to a multi-VM
application.

Property 1 Proportional Allocation Property: For a
multi-tier application, the VM sizing allocates resources
to all the components of an application in a way that they
lead to the same application throughput.

4.4 Iterative Procedure

The Iterative proceduretakes the computed placement
and uses theWattApppower meter to estimate the power
consumed by the placement. If the estimated power
meets the power budget, theReconfiguration Manageris
triggered to reconfigure the data center. If the estimated
power is more than the budget, we iterate fromServer
Selectionwith a lower budget.

The Brownout problem has two optimization objec-
tives: (i) power minimization and (ii) utility maximiza-
tion. Minimization problems that have a convex objec-
tive function and maximization problems with a concave
objective function lead to a fractional optimal solution
easily. Hence, we have converted the power curve in the
Server Selectionproblem to a convex approximation. In
case the utility-capacity curve for all the applications is
concave, this implies that the iterative procedure would
converge to a solution that minimizes power and max-
imizes utility for a fixed server capacity. Further, the
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solution is also within the power budget and is close to
the fractional optimal solution. We have formalized the
above proof sketch to obtain the following result. The
detailed proof is omitted for lack of space.

Theorem 2 For any instanceI of the brownout problem
(Eqn. 1), consider the modified problemI ′, which re-
places the power function by its convex approximation.
TheBrownMapsizing and placement methodology leads
to an integral approximation of the LP-relaxation ofI ′

for concave utility functions.

5 Experimental Evaluation

5.1 Prototype Implementation
We have implementedBrownMap to manage a cluster
consisting of8 IBM Power6 JS-22 blade servers. Each
blade has 4 IBM Power6 4.0 GHz cores with8GB of
RAM installed. The blades are connected to a Cisco Net-
work Switch for network access. The blade servers are
hosted on an IBM Bladecenter H chassis. The LPARs
in each blade get their storage from an IBM DS 4800
storage controller with 146 SAN disks. They use a2
Gbps Qlogic Fiber Channel link to communicate with the
SAN.

TheBrownMappower manager is deployed on a ded-
icated management server. The management server is a
IBM Power5 1.5 GHz machine with 1 GB of RAM run-
ning Linux kernel 2.6. In order to completely automate
the management, the management server has password-
less ssh enabled with all the LPARs and VIOs. Moni-
toring agents are deployed on all the LPARs and VIOs.
The management server also talks to the BladeCenter
Advanced Management Module to get power data about
the managed blades.

5.2 Experimental Setup
We now describe our experimental setup to evaluate our
BrownMapimplementation.

5.2.1 Applications and Traces Used

We have deployed2 different applications on our testbed.
The first application deployed in our testbed isRubis
[25] that simulates an auction site like ebay.Rubis is a
two-tiered application with a web front end and a back-
end database server. We denote the web tier asRubis-
Web and the database tier asRubis-DB. Rubis exe-
cutes the standard browse and buy mix that is supplied
with the application. Our second application isdaxpy, a
BLAS-1 HPC application [9].daxpy takes batch jobs
as input and executes them. We run two variants of
daxpy; namelydaxpyH as a high priority application
anddaxpyL as a low priority application.

We have instrumented both the applications and cre-
ated models for throughput versus consumed CPU re-
source. The CPU resource is expressed in terms of
the number of Power6 4.0 GHz cores for normalization
across all LPARs (refer Figure 6). We use three different
utility models for the applications.daxpyH is given a
utility function that makes it the highest priority applica-
tion in the testbed.daxpyL has a utility function with the
least utility per unit amount of resource consumed. We
attach a utility function forRubis that is intermediate
betweendaxpyH anddaxpyL. The exact utility func-
tions for the three applications for a given throughput (ρ)
are (i)daxpyH : Util(ρ) = 5ρ

33600
, (ii) daxpyL: Util(ρ) =

ρ
33600

, (iii) Rubis: Util(ρ) = 3ρ
129

. A natural interpretation
of the utility functions is that for the same resource used,
daxpyH , daxpyL andRubis get utility in the ratio of
5 : 1 : 3. Note that33600 is the throughput fordaxpy
and129 is the throughput ofRubis at 1 core resource
usage.

We have created drivers for each application that takes
a trace as input and creates workload for the applica-
tion in a way that simulates the utilization given by the
traces as shown in Figure-7. We use utilization traces
collected from the production data center of a large en-
terprise. More details about the traces are available in an
earlier work of ours [34]. Among the 9 traces we consid-
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ered, 2 show periodic patterns with a time period of one
day.

5.2.2 Competing Methodologies

We comparedBrownMapagainst a few other methodolo-
gies that an administrator can use to deal with brownouts
.
Baseline: The first methodology termed asBaseline
mimics the scenario where aBrownout Managerdoes
not exist. The methodology is useful as it achieves the
maximum utility without any resource restriction and can
be used to compare with the utility achieved by other
methodologies.
Server Throttling: This methodology throttles all the
servers in the shared data center to enforce the power
budget. However, this approach was unable to bring the
power down significantly in order to meet the budget in
most cases.
Proportional Switchoff: This methodology switches off
enough number of servers to meet the power budget. Fur-
ther, it reduces the resources allocated to the VMs in a
proportional manner. Finally, it migrates LPARs from
inactive bladeservers to active blade servers.

We compare all the methodologies with respect to their
ability to meet the power budget and the utility achieved,
while meeting the power budget. Further, we also study
their throughput and migration overheads.

5.2.3 Experimental Timeline

The BrownMap prototype runs in three different phases,
as shown in Figure-8. In theMonitoring Period, we col-
lect monitoring data for the applications and the servers.
Once sufficient historical data is available, we periodi-

MULTIPLE RUNS

Monitoring Period Evaluation Period
Consolidation PeriodSPEEDUP

REALTIME

Reconfiguration Period

Figure 8: Experimental Timeline

cally run theBrownMapmethodology and reconfigure
the data center. Each consolidation interval can thus be
broken down intoReconfiguration Periodduring which
we transition to the new configuration. This is followed
by theEvaluation Periodduring which the configuration
is allowed to run. Once the evaluation period is over, a
new consolidation period starts.

The traces evaluated had weekly periodicity requiring
the Monitoring Period to be 7 days or more. Further,
the reconfiguration activity (VM resizing and migration)
depends on a large number of factors and should be re-
peated multiple times for the results to be meaningful.
As a result, each experimental run takes an inordinately
large time. In order to speed up the experiments, we
divided each run into different parts. TheMonitoring
Periodwas speeded up using the already available trace
data. TheReconfiguration Periodwas repeated multiple
times in real time and each measure is a statistical aver-
age. TheEvaluation Periodwas run in real-time and the
throughput obtained by each application was measured.

5.3 Experimental Results
We performed a large number of experiments ranging
from a2 server cluster to a6 server cluster. We also in-
vestigated the performance ofBrownMapwith change in
utility function and power budgets. We now report some
of the important observations.

5.3.1 Prediction Accuracy

The BrownMappower manager depends on the predic-
tion made by theWorkload Predictorto determine the ex-
pected load in the next consolidation interval. TheWork-
load Predictormakes an estimate for the next evaluation
period and the maximum workload during the consolida-
tion period is taken as the demand of the LPAR. Hence,
we first study the accuracy of theWorkload Predictor
used inBrownMap(Fig. 9(a)). An interesting observa-
tion is that the peak workload (max) during the evalua-
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tion period is a more stable metric and can be predicted
to a greater accuracy than predicting the complete work-
load for the evaluation period. We observe that the error
in predictingmax is bounded by10%, which is quite ac-
ceptable. We also observe that the prediction accuracy
for both the time-varying workload during the evalua-
tion period and the maximum workload improves with
increase in monitoring data available, exceeding95% for
a history of3 days. An interesting observation we make
is that using a very low history for periodic traces may
introduce more errors in long term prediction than not
using any history at all (0.5 days history has higher error
than0 history in (Fig. 9(b)).

5.3.2 Comparative Evaluation

The first scenario we evaluated was on a 2-blade cluster.
We created6 LPARs on the blades and deployed two in-
stances ofdaxpyH anddaxpyL each. On the remaining
two LPARs, we installed theRubis-DB andRubis-Web
applications. The cluster during normal operation was
consuming500 watts. We simulate a brownout situation
and send a trigger to theController that the budget had
changed to250 watts.

We study the new configuration executed byPower
Managerin Fig. 10(a). ThePower Managerresizes the
LPARs and moves them toblade1, resulting in a drop in
power. We observe the power drawn and utility obtained
using (i) BrownMap, (ii) Baseline and (iii) Proportional
SwitchOff. The utility drawn byBaselineindicates the
maximum utility that can be earned if no power man-
agement actions are taken. We observe thatBrownMap
is able to meet the power budget without any significant
drop in utility (about10% drop from maximum). On the
other hand,Proportional SwitchOffincurs a45% drop in
utility from the maximum to meet the power budget.

To understand howBrownMapis able to reduce power
significantly without incurring a significant drop in util-
ity, we observe the throughput achieved by each appli-
cation in Fig. 10(b). We note thatBrownMapis able to
keep the throughput ofdaxpyH at the same level as the
one before the brownout happened. On the other hand, it

takes a lot of resources fromdaxpyL leading to a signif-
icant drop in throughput. TheBrownMapmethodology
does not take any resources away fromRubis. However,
since the overall system utilization is now higher, it leads
to a marginal drop in the throughput ofRubis. Hence,
BrownMapcarefully uses the utility function to assign
more resources to applications with higher utility per unit
resource consumed (Fig. 10(a)). This allowsBrownMap
to meet the power budget with minimal drop in utility.

We now investigate a4 server cluster to investigate
how BrownMap deals with larger number of servers.
We create12 LPARs with 4 instances ofdaxpyH and
daxpyL each. On the remaining4 LPARs, we install
2 instances of Rubis, i.e.2 LPARs with Rubis-DB
and2 LPARs with Rubis-Web. We again observe that
BrownMapadapts to the reduced power budget quickly
without a significant drop in utility (Fig. 11(a)).Pro-
portional SwitchOffagain has to sacrifice a significant
amount (close to50%) of utility to achieve the power
budget. The brownout is handled by carefully taking
away resources from the low priority application, thus
meeting the power budget with no more than10% drop
in utility. We also evaluatedBrownMapwith a 6 node
cluster that conformed to the above observations. For
lack of space, we do not report those numbers in this pa-
per.

5.3.3 Drop in Utility with Change in Power Budget

In real data centers, the reduction in available power due
to a brownout varies widely. Brownouts that happen
because of increased demand may reduce the available
power by10 or 20% whereas a major outage may reduce
available power by as much as75%. Hence, we next vary
the power budget and study the ability ofBrownMapto
deal with brownouts of differing magnitude in Fig. 12(a).

We observe thatBrownMapis able to meet the budget
for upto50% drop in power with less than10% drop in
utility. This is a direct consequence of the fact theBrown-
Map first takes resources away from the lowest priority
applications. These applications do not contribute much
to the overall data center utility and hence, we are able to
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reduce the power without a proportional drop in utility. It
is clear in Fig. 12(a) that a proportional throttling mech-
anism will not be able to meet the power budget without
sacrificing significantly on utility.

5.3.4 Using Utility for Fairness

The BrownMappower manager is able to deal with re-
duced power budgets by taking away resources from the
lowest priority applications. This may lead to an unfair
situation, which may not be acceptable to all data center
administrators. We next show that utility maximization
is a flexible tool that can capture diverse requirements
including fairness.

In order to investigate ifBrownMapcan meet a power
budget, while ensuring fairness, we change the original
utility values to a more fair utility functions, namely (i)
daxpyH : Util(ρ) = 5ρ

33600
, (ii) daxpyL: Util(ρ) = 5ρ

33600
,

(iii) Rubis: Util(ρ) = 5ρ
129

. This ensures that for the same
resource used, all applications get the same utility. We
study the throughput achieved by each application in
Fig. 12(b) and observe that all applications achieve the
same normalized throughput in such a scenario after the
reconfiguration. This study clearly establishes the flex-
ibility of BrownMap to deal with diverse optimization
scenarios from strict priority to fairness.

5.3.5 Reconfiguration Overheads

BrownMappower manager performs reconfiguration ac-
tions to meet a power budget. We next investigate the
impact on application performance due to reconfigura-
tion in Fig. 13(a). We observed that both our applica-
tions daxpy andRubis have minimal throughput drop
during migration. It has been observed earlier that there
is a drop in throughput during migration due to hardware
cache flushes [32]. We conjectured that this minimal
drop in throughput during migration may be because our
daxpy application executes small jobs whereasRubis
has a very large memory footprint and does not use cache
much. Hence, we used a medium memory footprint ap-
plication, which showed a throughput drop of20% dur-
ing migration.

We also observed during our experimental study that
the migration leads to an increase in CPU utilization for
the VIO (Figure-13(b)). This was true for all the apli-
cations studied. The increase in VIO CPU is because of
the fact that VIO has to maintain the list of dirty mem-
ory pages used by an LPAR during live migration. This
increase in CPU utilization can potentially lead to an im-
pact on I/O performance for the LPARs during migration.
However, it does not lead to a significant drop in through-
put for I/O intensive applications like Rubis in our setup.
This is because Rubis uses about25% of the resources

in our experimental setup and leads to an overhead of
no more than6% of one core in the VIO. However, for
data centers where I/O applications dominate, a drop in
performance may be seen during the live migration. We
also observed that theReconfigurationalways completed
in an average of4 minutes. Further, no reconfiguration
took longer than7 minutes. The scalability of the re-
configuration is a direct consequence of the fact that we
parallelize the configuration with one thread per server in
the data center. This distributed reconfiguration leads to
a small reconfiguration period ensuring minimal impact
on applications as well as enablingBrownMapto scale
to large shared data centers.

6 Related Work

The related work in the field of brownout management
includes power minimization, virtual machine placement
and power budgeting.

Power Minimization: There is a large body of work
in the area of energy management for server clusters
[19, 2, 7, 6]. Chen et al. [7] combine CPU scaling with
application provisioning to come up with a power-aware
resource allocation on servers. Chase et al. post a very
general resource allocation in [6] that incorporates en-
ergy in the optimization framework. However, most of
the power minimization work is in a non-virtualized set-
ting, where short-term decisions in response to workload
variations or power shortages can not be made. Other
approaches that have been pursued to minimize energy
consumption include energy-aware request redistribution
in web server and usage of independent or cooperative
DVFS [5, 22, 28, 16, 23, 12, 11, 17].

Virtual Machine Placement: The placement of virtual
machines on a server cluster has been studied in [3, 30].
Bobroff et al. [3] describe a runtime application place-
ment and migration algorithm in a virtualized environ-
ment. The focus is mainly on dynamic consolidation uti-
lizing the variability in workload. Similarly, the focus
in [30] is on load balancing as opposed to power bud-
geting. In [20], the authors advocate presenting guest
virtual machines with a set of soft power states such
that application-specific power requirements can be in-
tegrated as inputs to the system policies, without appli-
cation specificity at the virtualization-level.

Power Budgeting: There are other efforts in reducing
peak power requirements at server and rack level by do-
ing dynamic budget allocation among sub-systems [14]
or blades by leveraging usage trends across collections of
systems rather than a single isolated system [24]. How-
ever, the goal of this work is not to operate within a
power budget but to find a peak aggregate power. In
cases where the operating power exceeds the predicted

12



 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12

T
h

ro
u

g
h

p
u

t 

Time (Minutes)

Medium Footprint Application
Daxpy

 0

 20

 40

 60

 80

 100

0 50 100 150

C
P

U
 U

til
iz

a
tio

n

Time (Minutes)

VIO-1
VIO-2

(a) (b)
Figure 13: Impact on(a) application throughput and (b) VIO CPU Utilization during migration

peak, each server is throttled leading to a performance
drop. Moreever, these techniques do not leverage virtual
machine migration that allows a server to be freed up and
put to a standby state. Finally, the presence of multiple
virtual machines with possibly different SLAs on a single
server make resource actions at server-level impractical.

In an earlier work [32, 33], we have proposed power
minimization mechanisms that use virtual machine mi-
gration to minimize power. However, the work deals
with power minimization as opposed to a power budget-
ing problem. Also, loss in utility of virtual machines is
not considered. One may note that the power budgeting
problem involves power minimization as a component
and is a much more general problem. In this work, we ad-
dress the problem of handling a brownout with minimum
loss in utility and present the design and implementation
of BrownMap, a power manager that quickly adapts to a
brownout scenario by reducing the power consumption
within the budget.

7 Conclusion

Brownout is a scenario where there is a temporary re-
duction in power, as opposed to a complete blackout.
Brownouts affect data center operations by forcing them
to bring down services and applications which may se-
riously impact its revenue. In this paper, we have pre-
sented the design and implementation ofBrownMap, a
power manager that can deal with brownouts with mini-
mal loss in utility (or revenue). We present both theoret-
ical and experimental evidence to establish the efficacy
of BrownMapin dealing with brownouts. Our evaluation
on a real cluster of IBM Power6 JS-22 Blades using real
production traces indicates thatBrownMapmeets power
budget with a drop of10% in overall utility for a power
reduction of50% for realistic utility models. The re-
configuration operation inBrownMapis completely dis-
tributed, allowing it to scale with increase in the size of
data center.
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