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Abstract the power available to a data center.

Shared data centers that use virtualized servers as buiId:A prownput IS a temp_orary mte_rrup'uon of power ser-
vice in which the electric power is reduced, rather than

ing blocks (e.g., clouds) are emerging as an excitingo : is th ith a black |
technology that provides a computational platform for eing cut as is the case with a blackout. For example,

customers without incurring a steep setup cost. Théhe voltage drops from 120 watts to 98 watts or less that

providers of a shared data center, however, need intellid™® available to IT equipment. Major metropolitan cities

gent mechanisms to deal with bursts in resource requirem the developed world as well experience brownouts

ments as well as failures that may significantly reducedue to lower power availability. In the year 2003

resource availability. In this work, we investigate mech-POWer outages happened in North America leading to

anisms to ensure that a shared data center can operaﬁéeducnon in the _avallable power supply [21]'. _Ove_r-
within a power budget, while maximizing the overall rev- oads on the electrical system or natural calamities like
enue earned by the p’rovider We presentBravnMap storms etc. can disrupt the distribution grid, triggering a
methodology that is able to ensure that data centers Cal?{ownout. These can last anywhere between minutes to

deal both with outages that reduce the available powef’l few hour_s depgndlng on their severity. In developing
or with surges in workloadBrownMapuses automatic countries like India, brownouts may last for days due to

VM resizing and Live Migration technologies to ensure insufficient energy supply especially during the summer

that overall revenue of the provider is maximized, while season. In some cases, a brownout is actually dehpqr-
meeting the budget. We implemeBtownMapon an ate, when voltage reductions are undertaken when it is

IBM Power6 cluster and study its effectiveness using asensed that a disruption in the grid may lead to serious

trace-driven evaluation of a real workload. Both theO_problems. Rather than instituting rolling blackouts, the

retical and experimental evidence are presented that egr_:ectml:lty distribution company may temporarily reduce
tablish the efficacy oBrownMapto maximize revenue, the \IIIO tage tfo Eomgdcus;omerﬁ in-an attemptfto prevent
while meeting a power budget for shared data centers. & €0/'aPS€ 0 the grid and to allow reserves of power to
accumulate again.
) Some surveys [1] predict that unless corrective actions
1 Introduction are taken, power failures and limits on power availabil-
L . . ity will affect data center operations at more tttf36 of
The inevitability of power outag\_es_m a power gnd due all companies within the next five years. Power grids
_to the complex nature of the grid is slowly be_mg_ _real- have started differential pricing to deal with low fre-
ized [4]. In the year 2007, ‘more than 10_0 S|gn|f|cantquency problems. For example, the KSE grid in India
outages had been repprted in North America [2.1]. Th,echarges R$70 per KiloWattHour (KwH) for any addi-
gap between thg creation of New power gen_era‘uon u_n'tﬁonal unit consumed over and above the allocated quota
and the increasing growth-driven demand in emergin f the supply frequency dips belowd Hz whereas the
economies make the problem even more acute in deve egular charges &0 Hz are around Re/KwH [31]
oping countries. A 2908 report by Stratfor [29] indi- Hence managing the impacts of a brown-out and recom-
cat((ejs that thegﬁ_)wthbln G]PP outcgacej _grovv(;h 'E powe'i"nending actions to deactivate appropriate services with
]E)ro uctlfon in thina 3( af aﬁtor an r:n India by @ 0 |05t financial impact to Data Center business is crit-
actor of2. As a result of the power shortages, enter-jo,| Tpe ability to gracefully deal with brownouts also

prises depend on back-up generators _to de"?“ W'th OUtg';ive Data Centers the opportunity to enhance their image
ages. However, the backup power available is typlcallyaS good corporate citizens

much smaller than the demand leading to another electri- ]
cal condition called powesrown-outsi.e., reduction in ~ Creating a power budget for an ensemble of blade [24]



or rack servers [14] has been addressed earlier. The goal; hosted on)M serversS;. Each application is run

in these cases is to find the aggregate peak power cotin a dedicated virtual machine (VM) or logical partition
sumption and use it as a budget. If the actual powe(LPAR) and has a utility value that is a function of the re-
exceeds the estimated budget, a throttling mechanism source allocated to the LPAR/¢ility(z;)). We use the
used at each server. The emergence of virtualization iterms VM and LPAR interchangeably in this work. The
data centers make such application-unaware server throtlata center experiences a brownout for the Aekburs
tling of limited use. Multiple virtual machines running with the available power reduced ;. The goal of the
applications with different SLAs (and utility) may be co- Power Manageis to re-allocate resources to each appli-
located on a common server and a server-based poweations, migrate applications (virtual machines) between
management mechanism is unable to differentiate beservers, and switch servers to low power states in order
tween these applications. Further, server throttling doeso meet the power budget. Further, we need to ensure
not leverage virtual machine migration, which is an ef-that the utility is maximized while meeting the budget.
fective tool for power management. Finally, a brownoutFormally, we need to find an allocation (or VM Size)
may significantly reduce the available power to a datafor each applicatiom!; and a mapping; on each server
center and due to the limited dynamic power range of aS; s.t.

server [33, 32], throttling may not be able to reduce the N
required amount of power. arg max Z Utility(x;) 1)
X,y =
M =t N Mo
1.1 Contribution ZPowerj (x,y) < PB, VS, nyxl <Cj, V4 ny =1

BrownMap is designed for data centers to deal with7=! =1

Jj=1
brownout scenario, where a substantially lower powewhereUtility(x;) is the utility earned by applicatidf)
budget may be available due to a power outage. It calf it is assignedr; resourcesPower;(x,y) is the power
also help a data center to deal with power surges thaiirawn by servef; for the given resource assignment and
arise due to workload variability. The contribution of our placement, and’; is the capacity of the serve;. Var-
work is two-fold: ious benchmarks exist to capture the capacity of various
(i) We present the design and implementation of a runServer models. In this work, we use the IDEAS RPE2
time BrownMappower manager that helps a shared datavalue of a server to denote its capacity [27].
center deal with brownouts. The power manager uses
a distributed monitoring and reconfiguration framework.2 1 Deriving VM Utility for multi-tier ap-

Our lde3|gn has minimal monitoring overheads and re- plications

configures the server cluster to meet the power budget
in a very short duration. ThBrownMaparchitecture is
robust enough to deal with noise in monitored data and
scales well with the size of the server cluster.

(i) We present theBrownMapplacement methodology

to find the configuration that maximizes the utility earned
by the applications, while meeting the power budget. The
methodology uses a novel divide and conquer method- ‘
ology to break the hard power budgeting problem into THROUGHPUT

Server SelectioVM Resizing andvM Placemensub-  Figure 1: Utility Computation for multi-tier applications
problems. We use a iterative procedure that leverages

the nature of the power and utility curves to find a con- \we have used a utility maximization framework to cap-
figuration that is close to the optimal for most practical tyre the importance of each application to the shared data
scenarios. On a real testbed using production traces, Weanter. The utility may be computed based on the rev-
show thaBrownMapmeets the reduced power budgetin enue earned by the data center by each application. A
the order of minutes and can bring the power down byytility based framework is general enough to capture var-

RESOURCE
UTILITY

close t050% for a10% drop in utility. ious other objectives like strict priority and fairness.
o . Our framework assigns resources to each VM and
2 Model and Preliminaries hence needs a utility function to be associated to individ-

) ual virtual machines. However, many data centers run
We now formally define the brownout problem addressed,,ices composed of multiple applications, which may

in this paper. again be multi-tiered and run from two or more LPARS.
We consider a shared data center whapplications A service can easily be broken down into the applications



and the utility for each application can be estimated. Foi3 BrownMap Architecture

example, an e-Commerce site would have applications . ) ) )

for browsingand shopping These applications would In this section, we describe the overall architecture of the
typically run on separate set of VMs in a large data centePrownMap Power Manager

for ease in application support and maintenance. Hence, BrownMap Power Managezomputes a new sizing and

it is relatively straightforward to assign utility to each placement for the Virtual Machines (VMs) for a fixed du-
application, which serves exactly one type of requestsration termed as the consolidation interval (e.g., 2 hours)
However, utility functions are still defined for the com- The key modules in the BrownMap Power Manager, as
posite application and not for each tier separately. Ashown in Fig. 2, are (iMonitoring Engine (i) Workload
typical 3-tiered application has a front end web server, aPredictor, (iii) Profiling Engine (iv) Placement Gener-
middle tier application server and a backend DB serverator, and (b)Reconfig Manager The Monitoring En-

In order to apply our framework, we need to derive thegine periodically collects (a) system parameter values
utility functions for each application component (or VM) from each logical partition (LPAR) as well as the Vir-
from the utility function of the composite application.  tual I/O partition present on each physical server in the

We have designed a proportional utility assignmentShared data center and (b) Application usage statistics,

method to derive the utility for each application compo-2and stores them in the Monitor Log. Thewer manage-
nent. Consider an example scenario with a 2-tiered apr_nentflow is orchestrated by @ontroller. TheController

plication in Fig. 1. Th&/TTLITY function capturesthe €Xecutes anew flow on an event trigger, which could be
utility derived by the composite application for a given €ither achange in the power budget or the end of the pre-

throughput. TheRESOU RCE function captures the vious consolidation interval. On receiving an event trig-
resource consumption of each tier (or VM) for a cer- 96" it invokes thé\orkload Predictoy Profiling Engine

tain application throughput. Resource functions for eactf’'acement GeneratoandReconfiguration Managen

tier can be obtained using monitored data that map reth€ given order to coordinate the computation of the new
source utilization in each component VM to the applica-configuration and its execution. The main steps in the
tion throughput. In cases where an application may havdow of the BrownMap technique are (i) estimation of

multiple types of requests, the functions are based on ah€ resource demand for each VM in the next consolida-
erage estimates. tion interval by theworkload Predictor (i) updation of

) _ the VM resource demands to account for VIO resource
In order to apply our methodology, we derive the utility usage based on the profiles of each application by the

for each VM from the applicatio®/ TILITY function Profiling Engine (iii) re-sizing and placement of VMs

and RESOURCE function for the VM in the follow- 4564 on their utility models and a power budget by the
ing manner. We divide the utility derived by the applica- pj5cement Generatofiv) execution of the new configu-

tionto it§ components in proport_ipn to the resource used, 5¢q, by theReconfig ManagerWe now describe each
Hence, in Fig. 1, we set the utility (Ifompgnentl at component of our architecture separately.
throughputl; as—=— x U;. The above assignment en-

r1+T2

sures that the sum of the derived utility of all components o )
of an application at a given throughput equals the actuaB.1 Monitoring Engine

utility of the application at the throughput. The monitoring engine periodically collects resource us-
For multi-tier applications, it is also desirable that the age statistics for all partitions, including the managemen
resource assigned to each component by any optimizapartition, on a physical node. For IBM's Power Hyper-
tion methodology should be such that no one compovisor (pHyp) the management partition is called the Vir-
nent becomes a bottleneck. To consider the example itual /0O (VIO) Server. The monitor agent on each par-
Fig. 1 again, if LPAR1 has a resource assigngcand tition collects utilization data for CPU, active memory,
LPAR2 has resource assigned greater thgnany ad- network traffic, and I/O traffic, and feeds it back to the
ditional resource assigned to LPAR2 abayedoes not monitoring engine. The data is sampled every 30 sec-
lead to an increase in the throughput of the applicationonds, and periodically the aggregate log files are pushed
This is because the application is limited by the lowestto a Monitor Log, implemented as a relational database.
resource allocation among all components (in this casd he monitored data can be accessed from this database
RESOURCE1). We will later show (Sec. 4) how our by the other modules. The script based monitor agent
optimization methodology satisfies this proportional as-running on each partition is low overhead, and consumes
signment property as well. less than 0.1% of the resources allocated to a partition.

Monitoring the resource usage in a virtual partition is
challenging because the resources dedicated to the parti-
tion can change dynamically under certain settings. For
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Figure 2: BrownMap Power Management Architecture

example, the number of CPUs allocated to a partitiononger horizons with significant reliability using a long
can vary over time. Therefore, the monitor agent musterm forecast. However, the prediction error increases
track the resources currently used by the partition, whichrapidly for non-periodic workloads as the horizon in-
is called the entitlement of the partition. The actual re-creases. We use a two-pronged strategy in the design of
source usage, for CPU and memory, is percentage utbur Predictorto handle both periodic and non-periodic
lization with respect to the entitlement. Note that theworkloads. We make a short-term as well as a long term
CPU entitlement for each LPAR in a Power6 virtual envi- prediction and use both to estimate the resource usage.
ronment can be a fraction of the total CPU pool available A popular method for deciding periodicity is the auto-

on the physical server. Many of the modern processorge|ation function and the peaks in the magnitude spec-
are also capable of scaling the voltage and frequency i, [15, 3]. Once the periodicity for a workload is de-

order to optimize power consumption, which is known termined, we use it to make a long term forecast. The

as Dynamic Voltage and Frequency Scaling (DVFS). If g1t term prediction is based on polynomial approxima-

DVFS is enabled, the reported entitlement takes into acgio 1o minimize the least-square error. We then use a
count the scaled CPU frequency. Active memory statiSyygjght parameter to give weightage to the long term and
tics reports changes in the memory utilization while an

NN : o short term forecasts. Let us divide the usage history into
application is executing. Network statistics collectsadat a sequence of time periods and we consider theFast

on number of bytes and packets transferred. 1/0 statispgriggs for estimation. Our goal is to forecast the next

tics collects data for the disk activities, which could beK usage values based on lastamples of the usage his-
storage attached over SAN. The resource usage statistiggry wheren — P«p, p is the number of samples in the

of the VIO are similarly monitored and logged. Itis im- oqfimated time period. The resource demaria.at)-th
portant to note that the VIO performs work on behalf of ;.o 1is predicted as

individual LPARs, which should be accounted back to
the LPAR. The profiling engine, discussed later ensure _q 1< ‘ b —
that the LPAR resource usage captures the work done b+t = (1=0)* 5 Z; Yirpth + O fp (Y Yn—1, - Yn—n.-1); =

VIO onits behalf. where y;.,+x are the corresponding usage vali@s at

. the k'" sample of thei-th cycle, f, is the short
3.2 Workload Predictor term prediction based on lasV, samples anda

The goal of theNorkload Predictois to estimate the raw is the weight parameter. Note th% Zf;yi and
resource (CPU, memory, network, disk) demand for eactyfy, (y5—1, ¥n—2, - - ., Yn—n, ) represent the long and short-
VM in the next consolidation interval. It has been ob-term components of the forecasted value, respectively.
served in data centers that some workloads exhibit nic&Ve setw as1 for workloads without periodicity and.5
periodic behavior and some do not follow any particu-otherwise. For the resource usage histories we consid-
lar pattern [34]. Periodic workloads can be predicted inered, we found that second order is sufficient for rea-



sonable approximation, and the error increase&’as-  specified power budget. Based on resource demands and
creases. Finally, the default value Bfis set such that the utility accrued from each application, it computes a
the number of periods cover a week, which has been oba new placement map, which specifies which applica-
served to be sufficient to determine periodicity in datations reside on which servers and occupy what capacity
centers [34]. (i.e size) of the host server. Further, based on the ap-
plication and server profiles, tHéZO layer is also re-
3.3 Profiling Engine §ized. The.power consumed by this new pllacement map
is now within the power budget and maximizes the over-
/O processing for virtual I/O adapters are performed bya|| utility. The details of the placement methodology im-

the Virtualization layer (Virtual 1/O Server or VIO in plemented by thélacement Generataare detailed in
pHyp and domO0 on Xen) on behalf of individual LPARS. gec. 4.

This redirection leads to a CPU overhead for 1/0 pro-

cessing [8] that needs to be accounted back to the LPAR 5 Reconfiguration Manager
performing the 1/0. To take an example, the CPU over- . . .
head in VIO due to an LPAR having a network activity of The Recor_lflguratlon Managetakes as mpgt the new
600K Bps on an IBM JS-22 BladeCenter is aroutth LPAR entltlemgnts and placement provided by the
of 1 4.0GH > Power6 core (Fig 3(b)). ThRrofiling En- Placement Engineand moves the data center to this

gineprovides an estimates of these VIO CPU overheadfew configuration in the most efficient manner possible.

and accounts it to the LPAR in order to create the rea PAR mlgr_at|0n IS an expensive operatloht()_ 2. min-
resource demand for each LPAR. utes for active LPARS) and it is important to minimize the

time taken to reconfigure the data center. Further, since

TheProfiling Engineuses éProfile Databasehat cap- | pARs may both move in or out of a server, it is possi-
tures the relationship between hypervisor CPU overheag|e that there may not be available resources for an LPAR
and the disk and network activity in an LPAR for each moying in till some LPARs are moved out. This may cre-
physical server type (the two curves in Fig 3). This pro- ate temporary resource capacity issues leading to failures
file is created using calibration runs on each server modeyring reconfiguration. The goal of tiReconfiguration
in the datacenter. During thgower managemerilow,  \anageris to (a) minimize the total time taken to re-
thePI‘OfiHng Engina.]ses theérofile Databasalong with Conﬁgure and (b) avoid any temporary Capacity failures
the network and disk activity demand provided by theqye to migration. Th&®econfiguration Managespawns
Workload Predictoto estimate the VIO overhead due to 3 new process for each server that has at least one LPAR
each LPAR. The VIO overhead is then added to the ravheing migrated from it. This allows the reconfiguration
CPU demand of the LPAR to estimate the real I‘eSOUI‘CQO scale with the number of servers involved in the re-
demand for each LPAR in the consolidation interval. Theconﬁguration' In order to overcome any Capacity issues

real demand is used by tiiacement Enginéor VM during migration, we reduce the allocations on LPARs
sizing and placement. before starting the migration. This ensures that there is
The second job of th@rofiling Engineis to provide no resource allocation failure when an LPAR is migrat-
an estimate of the power for any configuration that theing into a physical node. The LPAR is resized back to its
Placement Generataromes up with. The power drawn correct resource allocation, as soon as the target server
by a server can not be accurately estimated only fronhas finished migrating any LPARs that are moving out
the expected CPU utilization of the server for heterogeof it. Once a blade has no LPARs running on it, Re-
neous applications, as it also depends on the nature of tHeonfiguration Manageeither switches off the blade or
application [32]. TheProfiling Engineuses WattApp, a Mmoves it toNap mode [13], if available on the server .
power meter that has been designed for heterogeneous
applications [18]. WattApp uses power profiles for each4 BrownMap Sizing and Placement
application on a server, which is then used to estimate the  Methodology
power drawn by a server for running a mix of applica-

tions. The individual power profile for each application We now present th&rownMap sizing and placement
is also stored in th@rofile Database methodology implemented by thelacement Engine

The problem of allocating resources to each VM in or-
der to meet a power budget, while maximizing the over-
3.4 Placement Generator all revenue (Eqn. 2), requires one to solve three prob-
The Placement Generatatakes as input the predicted lems at the same time: (i) Selection of active servers that
real resource demand (CPU, Memory, I/0) and the applimeet the power budget, (ii) Resource Allocation for each
cation profiles from thérofiling Engine utility models VM (z;) on the available capacity of the servers and (jii)
for the workloads, the previous allocation and the usePlacement of VMs on active physical servey$)( One
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may observe that the resulting problem is an NP-hardhree sub-problems, namely Server Selection, VM Siz-
problem, as bin packing becomes a simple case of thisxg and VM Placement. One may not that the feasible
problem. space for each sub-problem depends on the solution of

In order to understand the problem, observe that th@ther sub-problems. For example, t8erver Selection
optimization problem evaluates two functions, namelyProblem can predict whether the power budget can be

Power andUtility as a function of VM sizesa() and met, only if the pIacement.and sizing of the applicatiqns
their pIacementg@). As noted in [32], power consump- 2'€ known. To address this problem, we assume a fixed
tion by a server is not determined solely by the server’ssoluuOn for the other two sub-problems, while f|n_d|ng
utilization but is also dependent on the nature of applica:[he best solut_|on fpr each su_b-problem. We then |t_e_rate
tions running on the server. Hence, estimating the powePVer the solution till we can find a placement and sizing
drawn by a heterogeneous mix of applications in a share1at meets the power budget. Our methodology lever-

data center is a challenging problem. Since a closed forri9€S @ recent power modeling work Wattapp [18], which
for an objective function namely power does not exist,'S able to predict the power drawn by a heterogeneous

off the shelf solvers can not be used. The Utility func- mix of applications running on a shared data center, for

tion is again a derived measure and is dependent on tHgPnvergence. The overalliterative flowBfownMap as
SLA parameter of the application. Typical utility func- SNOWn in Fig. 4, consists of the following steps.

tions would satisfy the law of diminishing marginal re- ) ] )
turns and may be approximated by a concave curve. The ® Server Selection: In this step, we use the avail-
value of the SLA parameter depends on the resource as- ~ aPIe power budget to pick the most power efficient
signed to the application and is typically a convex func-  Servers within the power budget for an average ap-
tion (e.g, Fig. 5(b)). Hence, the nature of the utility curve ~ Plication. We leverage the Order Preservation prop-

with the resource is a function with potential points ofin- €ty from an earlier work [32] that allows us to rank
flection making it a difficult problem to solve. servers with respect to power efficiency in an ap-
plication oblivious manner. Once we identify the

active servers, we compute the aggregate server ca-
pacity available to the applications.

We now present an outline of oBrownMapmethod-
ology that solves this problem using an iterative proce-
dure.

e VM Sizing: This step takes the available capacity as
input and computes the best VM sizg ) for each
application that maximizes the utility earned within
the available capacity.

4.1 Outline of BrownMap

POWER B! GET

REDUCED
1 SERVER SELECTION .
POWER

BUDGET| L]

VM Placement: In this step, we use the servers and
their operating points and VM sizes to compute the
best placementy) of VMs on servers. We use the
history-aware iDFF placement method presented in
an earlier work [32].iDF F' is a refinement of the
First Fit Decreasing bin packing algorithm that also
minimizes the number of migrations. For further
details of this step, the reader is referred to [32]
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A 4
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vMbles
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OPERATING
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e lterate: If the Placement method is able to place all

Figure 4: BrownMap Placement Algorithm Flow

The BrownMapmethodology is based on a 'divide and
conquer’ philosophy. We divide this hard problem into

the applications, we use WattApp [18] to estimate
the power drawn. If the estimated power exceeds
the budget or the applications can not be placed in



the previous step, we iterate from the server selecnon-corner points are equal (Fig. 5(b)). The first prop-

tion step with a reduced set of servers. erty ensures that we meet the power budget assuming the
Server Selectioprocess is accurate. The second prop-
4.2 Server Selection erty ensures that the overall utility drawn by the VMs

within the power budget can not be increased by making

small changes. Itis easy to see (proof omitted due to lack

set of Zerversbantcri] their oper_atmg[hpomts such ghzt ﬂ:%f space) that the resultant solution has the following op-
power drawn by the servers is within a power budget. i broperty.

Further, the total server capacity available for hosting

VMs is the maximum possible within the power budget. Theorem 1 The VM Sizing Method finds a resource al-
Note that the power drawn by a server is not determinegpcation that is locally optimal. Further, if the utility ve
solely by the CPU utilization but also on the application sys capacity models for all VMs are concave, then the

mix running on the server [10], [26], [32], [33], [18]. resource allocation is globally optimal.
Hence, the power drawn by a set of servers can not be

represented as a closed function of the capacity used, as itWe note that the VM sizing for one VM is independent
depends on factors other than server capacity. Howeveof other VMs. Hence, if an application has multiple com-
we have noted in [32] that an ordering can be establishe@onents, with each component hosted in a separate VM,
between different servers based on their power efficiencyhe sizing may lead to resource usage. A desirable prop-
for any fixed application and this ordering holds acrosserty is that each component of an application should be
applications. sized to achieve the same throughput. In order to achieve

We use theDrdering propertyto order servers and cre- this, we add another condition to the convergence. If two
ate a power vs capacity curve in Fig. 5(a). We replace th¢/MS compete for a resource and have the same slope
original curve with a convex approximation and find the ©" the utility-capacity curve, we assign the resource to

server capacity that meets the power budget. The convek® VM with a lower achieved SLA value. This property

approximation is employed for the iterative convergenceCOUPIed with the utility breakup for multi-tier applica-

We use this selection of servers and operating points fofioNS (Sec. 2.1) leads to the following proportional allo-
VM sizing and placement. Once we get an allocation ofcation property between VMs belonging to a multi-vVM
VMs to servers and their sizes, we estimate the actugftPPlication.

power consumed by the servers using the WattApp mete|5

[18]. If the estimated power drawn exceeds the power roperty 1 Proportional Allocation Property: For a

ulti-tier application, the VM sizing allocates resources
budget, we move down on the convex power curve antin N
iterate again o all the components of an application in a way that they

lead to the same application throughput.

We define theServer Selectioproblem as finding a sub-

4.3 VM Sizing

The VM Sizing problem takes as input an aggregate4-4 Iterative Procedure
server capacity available to host a set of VMs. Further

for each VM, a model of utility as a function of the SLA The lterative proceduretakes the computed placement

parameter of the VM and a model of SLA parameter ver-2nd Uses thivattApppower meter to estimate the power
sus resource assigned to the VM is taken from the Preconsumed by the placement. If the estimated power
Processing step. We use the utility and resource modef§1€€tS the power budget, tReconfiguration Manages

to create a model of utility versus resource allocated fortnggere_d to reconfigure the data cenFer. If the estimated
each server. We staviM Sizingby allocating to each VM Power 1S more than the budget, we iterate fr&erver

the maximum resource required by it in the next consol-S€lectionwith a lower budget.

idation interval. We then iteratively take away resources The Brownout problem has two optimization objec-
from the VM with the least slope of the Utility-Resource tives: (i) power minimization and (ii) utility maximiza-
curve (or the VM which has the least drop in utility for tion. Minimization problems that have a convex objec-
a unit decrease in resources allocated). To take the exive function and maximization problems with a concave
ample in Fig. 5(b), we first take away resources from theobjective function lead to a fractional optimal solution
first VM (with the least slope). In the next step, the third easily. Hence, we have converted the power curve in the
VM has the least slope and we reduce its resource allocéBerver Selectioproblem to a convex approximation. In
tion. TheVM sizingmethod terminates when (@) the total case the utility-capacity curve for all the applications is
capacity used by the VMs equals the capacity given byconcave, this implies that the iterative procedure would
the server selection process and (b) the selected point aonverge to a solution that minimizes power and max-
each curve is either a corner point or the slope of all themizes utility for a fixed server capacity. Further, the
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solution is also within the power budget and is close t05.2.1 Applications and Traces Used
the fractional optimal solution. We have formalized the
above proof sketch to obtain the following result. The

. . . We have deploye# diff tapplicati testbed.
detailed proof is omitted for lack of space. © have ceployerdiierent appications on our 1estbe

The first application deployed in our testbedRabis

) [25] that simulates an auction site like ebdyubis is a

Theorem 2 For any instance of the brownout problem 1o tiered application with a web front end and a back-

(Egn. 1), consider the modified probleffy which re-  ¢ng gatabase server. We denote the web tiekas s-

places the power function by its convex approximationyjs.;, and the database tier @ubis-DB. Rubis exe-

TheBrownMapsizing and placement methodology leads ¢ yes the standard browse and buy mix that is supplied

to an integral g_pproxim_ation of the LP-relaxation &f \\ith the application. Our second applicationliszpy, a

for concave utility functions. BLAS-1 HPC application [9]. daxzpy takes batch jobs
as input and executes them. We run two variants of
daxpy; namelydaxpyH as a high priority application

5 Experimental Evaluation anddazpyL as a low priority application.

: We have instrumented both the applications and cre-
5.1 Prototype Implementation ated models for throughput versus consumed CPU re-
We have implementeBrownMapto manage a cluster source. The CPU resource is expressed in terms of
consisting of8 IBM Power6 JS-22 blade servers. Each the number of Power6 4.0 GHz cores for normalization
blade has 4 IBM Power6 4.0 GHz cores WitvB of  across all LPARS (refer Figure 6). We use three different
RAM installed. The blades are connected to a Cisco Netutility models for the applicationsdaxzpyH is given a
work Switch for network access. The blade servers argytijity function that makes it the highest priority applica
hosted on an IBM Bladecenter H chassis. The LPARS;jon in the testbeddazpy L has a utility function with the
in each blade get their storage from an IBM DS 4800jeast utility per unit amount of resource consumed. We
storage controller with 146 SAN disks. They us€a attach a utility function forRubis that is intermediate
Gbps Qlogic Fiber Channel link to communicate with the betweendazpyH anddazpyL. The exact utility func-
SAN. tions for the three applications for a given throughpiyt (
The BrownMappower manager is deployed on a ded-are (i) dazpyH: Util(p) = 326, (ii) dazpyL: Util(p) =
icated management server. The management server issg&y; ., (i) Rubis: Util(p) :13—;9. A natural interpretation
IBM Power5 1.5 GHz machine with 1 GB of RAM run- of the utility functions is that for the same resource used,
ning Linux kernel 2.6. In order to completely automate daxpyH, daxpyL and Rubis get utility in the ratio of
the management, the management server has passwofd: 1 : 3. Note that33600 is the throughput fotlazpy
less ssh enabled with all the LPARs and VIOs. Moni-and 129 is the throughput ofRubis at 1 core resource
toring agents are deployed on all the LPARs and VIOsusage.

The management server also talks to the BladeCenter\ye haye created drivers for each application that takes
Advanced Management Module to get power data abouf, yrace as input and creates workload for the applica-

the managed blades. tion in a way that simulates the utilization given by the
traces as shown in Figure-7. We use utilization traces
5.2 Experimental Setup collected from the production data center of a large en-

uH;arprise. More details about the traces are available in an

We now describe our experimental setup to evaluate o ) :
P P earlier work of ours [34]. Among the 9 traces we consid-

BrownMapimplementation.
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Figure 7: Traces Used for evaluation: Broken into twothe data center. Each consolidation interval can thus be
parts for better clarity broken down intcReconfiguration Periodluring which

we transition to the new configuration. This is followed
ered, 2 show periodic patterns with a time period of oneby theEvaluation Periodduring Wh'Ch. the corlflggratlon
day, is allowed to run. Once the evaluation period is over, a

new consolidation period starts.

5.2.2 Competing Methodologies The traces evaluated had weekly periodicity requiring
the Monitoring Periodto be 7 days or more. Further,
We compare®rownMapagainst a few other methodolo- the reconfiguration activity (VM resizing and migration)
gies that an administrator can use to deal with brownoutslepends on a large number of factors and should be re-
) peated multiple times for the results to be meaningful.
Baseline: The first methodology termed a3aseline  As a result, each experimental run takes an inordinately
mimics the scenario where Brownout Managerdoes large time. In order to speed up the experiments, we
not exist. The methodology is useful as it achieves thalivided each run into different parts. Théonitoring
maximum utility without any resource restriction and can Period was speeded up using the already available trace
be used to compare with the utility achieved by otherdata. TheReconfiguration Perioevas repeated multiple
methodologies. times in real time and each measure is a statistical aver-
Server Throttling This methodology throttles all the age. TheEvaluation Periodvas run in real-time and the
servers in the shared data center to enforce the powéhroughput obtained by each application was measured.
budget. However, this approach was unable to bring the
power down significantly in order to meet the budgetin5.3 Experimental Results

most cases. . .
. . . . We performed a large number of experiments ranging
Proportional Switchotf This methodology switches off from a2 server cluster to & server cluster. We also in-

enough number of servers to meet the power budget. Fu(/'estigated the performanceBfownMapwith change in

ther, it _reduces the resources _allo<_:ated to the VMS in EL‘JtiIity function and power budgets. We now report some
proportional manner. Finally, it migrates LPARs from of the important observations

inactive bladeservers to active blade servers.

We compare all the methodologies with respect to theis.3.1 Prediction Accuracy
ability to meet the power budget and the utility achieved,
while meeting the power budget. Further, we also studylrhe BrownMappower manager depends on the predic-

their throughput and migration overheads. tion made by th&Vorkload Predictoto determine the ex-
pected load in the next consolidation interval. Wierk-
5.2.3 Experimental Timeline load Predictormakes an estimate for the next evaluation

period and the maximum workload during the consolida-
The BrownMap prototype runs in three different phasestion period is taken as the demand of the LPAR. Hence,
as shown in Figure-8. In thidonitoring Period we col-  we first study the accuracy of th&brkload Predictor
lect monitoring data for the applications and the serversused inBrownMap(Fig. 9(a)). An interesting observa-
Once sulfficient historical data is available, we periodi-tion is that the peak workloadr{ax) during the evalua-



I Mean Abs Error I I Mean Abs Error
0.2r [ Peak Estimation Err 1 25T [ Error in Peak Demand |7

Iﬂ Ip |

0.5 .
Long Term History %Days)

o
N
o

o
© s o
RS

Normalized Prediction Error
o
o
(&}

Normalized Prediction Error

o

1 2 3

4 5 6 7 8 9
Server Id

(a) (b)
Figure 9: (a) Error in Prediction of Demand and Peak DemafdE(or in Workload Prediction with Monitoring
Period (Short Term Prediction Period = 2.5 Hrs, Weight 0.3)

tion period is a more stable metric and can be predictedakes a lot of resources frodaxpy L leading to a signif-

to a greater accuracy than predicting the complete workicant drop in throughput. ThBrownMapmethodology
load for the evaluation period. We observe that the errodoes not take any resources away frBmbis. However,

in predictingmax is bounded byl 0%, which is quite ac-  since the overall system utilization is now higher, it leads
ceptable. We also observe that the prediction accuracto a marginal drop in the throughput &fubis. Hence,
for both the time-varying workload during the evalua- BrownMapcarefully uses the utility function to assign
tion period and the maximum workload improves with more resources to applications with higher utility per unit
increase in monitoring data available, exceedifigh for  resource consumed (Fig. 10(a)). This allddrewnMap

a history of3 days. An interesting observation we make to meet the power budget with minimal drop in utility.

is that using a very low history for periodic traces may We now investigate a server cluster to investigate

introduce more errors in long tgrm predicti_on than noty o BrownMap deals with larger number of servers.
using any hlst_ory at alloc5 days history has higher error v createl2 LPARS with 4 instances oflaxpyH and
than0 history in (Fig. 9(b)). daxpyL each. On the remaining LPARs, we install

2 instances of Rubis, i.e.2 LPARs with Rubis-DB
5.3.2 Comparative Evaluation and2 LPARs with Rubis-Web. We again observe that

The first scenario we evaluated was on a 2-blade ClusterBrownMapadapts to the reduced power budget quickly

We created LPARSs on the blades and deployed two in- Wlth.OUt a S|gn|f|cant dr_op in utility (F.Ig' 11(a_))P_r9
- portional SwitchOffagain has to sacrifice a significant
stances oflaxpy H anddaxpyL each. On the remaining . .
. _ : amount (close t&0%) of utility to achieve the power
two LPARSs, we installed th&ubis-DB and Rubis-Web : :
o : . budget. The brownout is handled by carefully taking
applications. The cluster during normal operation was

. . . ““away resources from the low priority application, thus
consumingb00 watts. We simulate a brownout situation . .
. meeting the power budget with no more thE¥s dro
and send a trigger to th@ontroller that the budget had g P 9 o &rop

changed t@50 watts in utility. We also evaluate@rownMapwith a 6 node
' cluster that conformed to the above observations. For

We study the new configuration executed Bywer  |ack of space, we do not report those numbers in this pa-
Managerin Fig. 10(a). ThePower Manageresizes the per.
LPARs and moves them tdadel, resulting in a drop in
power. We observe the power drawn and utility obtaineds.3.3 Drop in Utility with Change in Power Budget
using (i) BrownMap, (ii) Baseline and (iii) Proportional
SwitchOff. The utility drawn byBaselineindicates the In real data centers, the reduction in available power due
maximum utility that can be earned if no power man-to a brownout varies widely. Brownouts that happen
agement actions are taken. We observe BraivnMap  because of increased demand may reduce the available
is able to meet the power budget without any significantpower by10 or 20% whereas a major outage may reduce
drop in utility (aboutl0% drop from maximum). On the available power by as much @%. Hence, we next vary
other handProportional SwitchOffncurs a45% dropin  the power budget and study the ability BfownMapto
utility from the maximum to meet the power budget. deal with brownouts of differing magnitude in Fig. 12(a).

To understand holBrownMapis able to reduce power  We observe thaBrownMapis able to meet the budget
significantly without incurring a significant drop in util- for upto50% drop in power with less thah0% drop in
ity, we observe the throughput achieved by each appliutility. This is a direct consequence of the fact Brewn-
cation in Fig. 10(b). We note th&rownMapis able to  Map first takes resources away from the lowest priority
keep the throughput afaxzpy H at the same level as the applications. These applications do not contribute much
one before the brownout happened. On the other hand, tb the overall data center utility and hence, we are able to

10
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reduce the power without a proportional drop in utility. It in our experimental setup and leads to an overhead of
is clear in Fig. 12(a) that a proportional throttling mech- no more thar6% of one core in the VIO. However, for
anism will not be able to meet the power budget withoutdata centers where I/O applications dominate, a drop in

sacrificing significantly on utility. performance may be seen during the live migration. We
also observed that thiReconfiguratiomlways completed
5.3.4 Using Utility for Fairness in an average of minutes. Further, no reconfiguration

took longer thariv minutes. The scalability of the re-

The BrownMappower manager is able to deal with re- i S .
. configuration is a direct consequence of the fact that we
duced power budgets by taking away resources from thé

lowest priority applications. This may lead to an unfair parallelize the configuration with one thread per serverin

situation, which may not be acceptable to all data cente}he data center. This distributed reconfiguration leads to

administrators. We next show that utility maximization a small _recpnﬁguraﬂon period ensurnng minimal impact
. . : . on applications as well as enabliByownMapto scale
is a flexible tool that can capture diverse requirement

: . : ?0 large shared data centers.
including fairness.

In order to investigate iBrownMapcan meet a power
budget, while ensuring fairmess, we change the originaf ~Related Work

utility values to a more fair utility functions, namely (i) , ,
dazpyH: Util( p) = (i) dazpyL: Util(p) = -2 The related work in the field of brownout management

o 335;%’ _ 33600°  includes power minimization, virtual machine placement
(iif) Rubis: Util(p) =155 This ensures that for the same 5.4 power budgeting.

resource used, all applications get the same utility. We T )

study the throughput achieved by each application in Power Minimization: There is a large body of work
Fig. 12(b) and observe that all applications achieve thd" the area of energy management for server clusters
same normalized throughput in such a scenario after thEt9: 2, 7, 6]. Chen et al. [7] combine CPU scaling with
reconfiguration. This study clearly establishes the flex-2Pplication provisioning to come up with a power-aware

ibility of BrownMapto deal with diverse optimization résource allocation on servers. Chase et al. post a very
scenarios from strict priority to fairmness. general resource allocation in [6] that incorporates en-

ergy in the optimization framework. However, most of
the power minimization work is in a non-virtualized set-
ting, where short-term decisions in response to workload

BrownMappower manager performs reconfiguration ac.variations or power shortages can not be made. Other

tions to meet a power budget. We next investigate théPproaches that have been pursued to minimize energy

impact on application performance due to reconfigura-?onsumption include energy-aware request redistribution

tion in Fig. 13(a). We observed that both our applica—'n web server and usage of independent or cooperative
tions daxpy and Rubis have minimal throughput drop DVES[5, 22, 28, 16, 23, 12, 11, 17].
during migration. It has been observed earlier that there Virtual Machine Placement: The placement of virtual
is a drop in throughput during migration due to hardwaremachines on a server cluster has been studied in [3, 30].
cache flushes [32]. We conjectured that this minimalBobroff et al. [3] describe a runtime application place-
drop in throughput during migration may be because oument and migration algorithm in a virtualized environ-
daxpy application executes small jobs whereasbis ment. The focus is mainly on dynamic consolidation uti-
has a very large memory footprint and does not use cachlizing the variability in workload. Similarly, the focus
much. Hence, we used a medium memory footprint apin [30] is on load balancing as opposed to power bud-
plication, which showed a throughput drop2if% dur-  geting. In [20], the authors advocate presenting guest
ing migration. virtual machines with a set of soft power states such
We also observed during our experimental study thafhat application-specific power requirements can be in-
the migration leads to an increase in CPU utilization fort€drated as inputs to the system policies, without appli-
the VIO (Figure-13(b)). This was true for all the apli- cation specificity at the virtualization-level.
cations studied. The increase in VIO CPU is because of Power Budgeting There are other efforts in reducing
the fact that VIO has to maintain the list of dirty mem- peak power requirements at server and rack level by do-
ory pages used by an LPAR during live migration. Thising dynamic budget allocation among sub-systems [14]
increase in CPU utilization can potentially lead to an im-or blades by leveraging usage trends across collections of
pact on I/O performance for the LPARs during migration. systems rather than a single isolated system [24]. How-
However, it does not lead to a significant drop in through-ever, the goal of this work is not to operate within a
put for I/O intensive applications like Rubis in our setup. power budget but to find a peak aggregate power. In
This is because Rubis uses abaao of the resources cases where the operating power exceeds the predicted

5.3.5 Reconfiguration Overheads

12



100
90 F
80

70 T 1
60 - 1

50
40
30 b Medium Footprint Application —+—
2 ‘ ‘ Daxpy -,

0 2 4 6 8 10 12
Time (Minutes)

Throughput

CPU Utilization

0 50 100 150
Time (Minutes)

Figure 13: Impact on%% application throughput and (b) VIElﬂJSﬁl&ation during migration

peak, each server is throttled leading to a performance
drop. Moreever, these techniques do not leverage virtual

machine migration that allows a server to be freed up and

put to a standby state. Finally, the presence of multiple [2]
virtual machines with possibly different SLAs on a single

server make resource actions at server-level impractical.

In an earlier work [32, 33], we have proposed power (31

minimization mechanisms that use virtual machine mi-

gration to minimize power.

However, the work deals

with power minimization as opposed to a power budget-

ing problem. Also, loss in utility of virtual machines is
not considered. One may note that the power budgeting

problem involves power minimization as a component
and is a much more general problem. In this work, we ad-

dress the problem of handling a brownout with minimu

loss in utility and present the design and implementation
of BrownMap a power manager that quickly adapts to a

brownout scenario by reducing the power consumption [6]

within the budget.

7 Conclusion

Brownout is a scenario where there is a temporary re-
duction in power, as opposed to a complete blackout.
Brownouts affect data center operations by forcing them
to bring down services and applications which may se-
riously impact its revenue. In this paper, we have pre-

sented the design and implementatiorBobwnMap a

power manager that can deal with brownouts with mini-

mal loss in utility (or revenue). We present both theoret
ical and experimental evidence to establish the efficac
of BrownMapin dealing with brownouts. Our evaluation
on a real cluster of IBM Power6 JS-22 Blades using rea
production traces indicates tHatownMapmeets power

budget with a drop 0f0% in overall utility for a power

reduction of50% for realistic utility models. The re-

configuration operation iBrownMapis completely dis-

tributed, allowing it to scale with increase in the size of

data center.
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