
RI08008, 26 May 2008                                                               Computer Science 
 
  
 

IBM Research Report 
 

Interleaved Retrieval of Documents and 
Diagnostic Trees for Self Help Portals 

 
 
 

Dinesh Garg, Nanda Kambhatla 
IBM Research Division 

IBM India Research Lab 
EGL, Block D, 3rd Floor, 

Bangalore - 560071, India 
dingarg2@in.ibm.com, kambhatla@in.ibm.com  

 
Gopal Pingali 

IBM Research Division 
IBM TJ Watson Research Center, 

NY, USA 
gpingali@us.ibm.com  

 
 
 
IBM Research Division 
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich 
 
LIMITED DISTRIBUTION NOTICE:  This report has been submitted for publication 
outside of IBM and will probably be copyrighted is accepted for publication.  It has 
been issued as a Research Report for early dissemination of its contents.  In view of 
the transfer of copyright to the outside publisher, its distribution outside of IBM prior 
to publication should be limited to peer communications and specific requests.  After 
outside publication, requests should be filled only by reprints or legally obtained 
copies of the article (e.g., payment of royalties).  Copies may be requested from IBM 
T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown Heights, NY 
10598 USA (email:  reports@us.ibm.com)..   Some reports are available on the 
internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . 
 



Interleaved Retrieval of Documents and Diagnostic Trees
for Self Help Portals

Dinesh Garg
IBM India Research Lab

Bangalore, India
dingarg2@in.ibm.com

Nandakishore Kambhatla
IBM India Research Lab

Bangalore, India
kambhatla@in.ibm.com

Gopal Pingali
IBM T J Watson Research

Center, NY, USA
gpingali@us.ibm.com

ABSTRACT
Self help portals are online portals for product sales and cus-
tomer support. Today, consumers can resolve most of their
problems pertaining to a product by accessing information
from these portals. The information on self help portals is
often organized as solution documents and diagnostic trees.
A diagnostic tree encodes the diagnostic steps for iteratively
narrowing down the scope of user’s problem and then even-
tually presenting the most relevant set of solution documents
to the user. Typically, search is enabled only for solution
documents. In this paper, we present algorithms for unified,
interleaved retrieval of solution documents and diagnostic
trees that can lead to more efficient resolution of user prob-
lems, especially when users’ queries are imprecise. We show
that interleaved retrieval of documents and diagnostic trees
leads to a improvement up to 10% in precision for general
help desk kind of queries about Microsoft Excel XP.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces

General Terms
Documentation, Human Factors

Keywords
Diagnostic Trees, Solution Documents, Customer Support
Portals, Search

1. INTRODUCTION
Self help portals are online portals for product sales, sup-

port, and customer service used by end users to access infor-
mation and resolve problems. The end user requests could
range from simple needs like downloading a user manual
for a washing machine to complex issues like finding opti-
mal plans for wealth management. Self help portals have

.

become an integral part of 24 × 7 online customer support
and Customer Relationship Management strategies of most
companies.

A self help portal contains varied features like frequently
asked questions (FAQ), search, etc. The goal is to enable
users to resolve their queries quickly and efficiently with
minimal human (agent) involvement that can lead to greater
user satisfaction and lower costs for the company. For in-
stance, a typical search feature lets users search for solutions
relevant to their query from a corpus of solution documents,
resulting in a ranked list of such documents displayed back
to them.

A solution document describes a solution to a particu-
lar problem. Typical problems are ‘how-to’ questions about
troubleshooting or accessing specific features and products;
e.g. ‘How do I add an attachment to an email?’ or ‘How
do I reset my Internet password?’. Solution documents are
drafted by the designers, experts, and support staff for the
products and/or services. These documents are indexed and
made available for the search by users.

In addition to solution documents, diagnostic trees are a
mechanism to capture the diagnostic steps often followed in
narrowing down users’ problems and suggesting solutions to
them. These trees contain user problems at their root nodes,
solution documents at their leaf nodes and successive diag-
nostic or resolution steps at their intermediate nodes. Thus,
each diagnostic tree captures knowledge about resolving a
particular problem and finding relevant solution documents.
A user can navigate the tree to find specific solution docu-
ments relevant to their issues.

Self help portals often contain both diagnostic trees and
solution documents in order to enable users to find solutions
quickly. However, typically, search is enabled only over solu-
tion documents. This can lead to an inefficient and frustrat-
ing experience for users in their quest for answers, especially
when their queries are imprecise. Enabling unified retrieval
of both diagnostic trees and solution documents can help
alleviate this problem.

In this paper, we present algorithms for interleaved re-
trieval of diagnostic trees and solution documents for self
help portals. We compute relevance of diagnostic trees for
queries utilizing the relevance scores of indexed solution doc-
uments. We show that our algorithm satisfies a set of ax-
ioms. For relevence feedback data compiled for help desk
queries about Microsoft Excel XP, we show that interleaved
retrieval improves precision up to 10% over separate re-
trieval.

The rest of this paper is organized as follows. In the next



section, we explain our notion of diagnostic trees. Next,
we discuss the need for interleaved retrieval of diagnostic
trees and solution documents. We then delineate axioms for
interleaved ranking and present a ranking algorithm that
satisfying these axioms. Finally, we describe experimental
results demonstrating the utility of interleaved retrieval and
present our conclusions.

2. RELEVANT WORK
This paper is related to the area of structured queries

for the hierarchical structure which is well described in [2].
This area addresses the problem of exploiting the hierar-
chical structure of text documents while querying them. In
our case, diagnostic trees codify the hierarchical structure in
documents. However, as we will describe later in the paper,
unlike the situation for structured queries, for self help por-
tals, the user queries typically describe user problems and
not their causes. Thus, structured query search may not
help much here.

There is a large amount of literature on diagnostic trees.
Most of this research has focused on automatic creation and
optimization of diagnostic trees [4] [3]. We were unable to
trace any prior work about unified retrieval of trees and
documents.

There is also literature available on axiomatic foundations
of ranking system [1] but this literature is mostly concerned
with the aggregating the preferences of the rational agents.

3. DIAGNOSTIC TREES
Diagnostic trees (DTs) are data structures that capture

the iterative/hierarchical diagnosis of a problem or set of
problems. DTs can be trees of many levels, where the leaf
nodes are solution documents. An internal node of a DT
comprise of the description of a problem whose solution can
be found by navigating one of the descendants of the node.
A user can navigate a DT to find solutions to a particular
problem by starting from the root of the tree and ending at a
solution document. When a user’s initial query is imprecise,
DTs can help the user navigate through the solution docu-
ments. Typically, as shown in Figure 1, DTs are created by
people with expertise about the problem areas and they use
the DTs to encode the knowledge in their heads. Figure 2

Figure 1: Creation of Diagnostic Trees

depicts a sample DT. This DT codifies the diagnosis for a
user problem “Unable to send email while using Lotus
Notes 6.0”. Note that

Figure 2: A Sample Diagnostic Tree

• The solution documents are always the leaf nodes of
the DT.

• Internal nodes have text descriptions of (narrower) prob-
lems that help users navigate through the tree to nar-
row down their problem.

• A user can traverse the tree starting from the root to
repeatedly narrow down the problem to reach a solu-
tion document most relevant to the problem.

4. INTERLEAVED RETRIEVAL OF DTS AND
SOLUTION DOCUMENTS

In this section, we discuss the need for interleaved retrieval
of DTs and solution documents in response to user search
queries. Interleaved retrieval implies that when users enter
search queries, they should get back relevant solution docu-
ments as well as DTs1 in unified ranked lists. An example
of such a unified interleaved list with both solution docu-
ments and DTs is shown in Figure 3. Here, the search query

Figure 3: Illustration of the result of interleaved
retrieval of DTs and solution documents

is “Unable to send emails through Lotus Notes”, and the re-
sults consist of three solution documents (ranked 1, 2, and
4) and one DT (ranked 3). When displaying a DT, we al-
ways display the text associated with the root node of the
tree. When the user clicks on the DT entry, it unfolds in a
breadth first manner. Figure 4 illustrates a user’s navigation
through the DT in Figure 2.

Why do we need interleaved retrieval of DTs and solution
documents? Will the retrieval of solution documents not

1The notion of relevance of a diagnostic tree is defined later
in the paper.



Figure 4: Illustration of navigation through a DT
from an interleaved set of DTs and solution docu-
ments

suffice, especially since they are the leaf nodes of DTs and
navigation through DTs culminate in solution documents
anyway?

The answers to these questions are rooted in the fact that
in customer support centers, users of products and/or ser-
vices often only provide high level descriptions of problems
they are facing while using the products or services. Typi-
cally, a user does not know or even want to know the cause
behind a problem. She just wants to fix the problem without
getting into the potential causes of the problem (for which
there may be a great many possibilities).

Given the above pattern, search queries are often impre-
cise due to a lack of knowledge by users about the problem
at hand. This, in turn, results in the relevant solution doc-
uments not being retrieved for such queries. In most such
cases, search queries only describe problems at a high level
without describing auxiliary information relevant to prob-
lem resolution. Such high level queries are often ineffective
in retrieving solution documents describing resolution of the
problems being experienced by the users.

DTs can effectively guide users from abstract high level
problem descriptions to relevant solution documents by re-
peatedly prompting for and obtaining relevant auxiliary in-
formation necessary for problem resolution. Especially for
imprecise, high level queries, DTs will often have higher rel-
evance scores than solution documents, since intermediate
nodes of DTs necessarily have abstract, high level informa-
tion about problems and their solutions. For such queries,
it is often the cause of the problem and not the problem it-
self that helps retrieve the solution documents most useful
for the user. The logic behind this claim is simple: for a
given problem there may be several potential causes and for
each cause there may be one or many solution documents.
When information about the root cause is absent in queries,
search algorithms are unable to retrieve the right set of so-
lution documents, since enough key words may not match
the queries and documents.

For example, suppose a user is unable to send email while
using Lotus Notes 6.0. She might submit search queries like
”Lotus Notes unable to send email” or ”unable to send email
while using Lotus Notes 6.0”. Since several different reasons
might have led to the user facing this problem, such queries
are unlikely to match the solution documents without more
(auxiliary) information from the user. For this query, a
higher level DT (e.g. the one in Figure 2) might match well

with the queries and also let the user find relevant solution
documents by providing more information while navigating
the DT.

In general, retrieving both DTs and solution documents
for user queries might work better than separately retriev-
ing both. Having a unified ranked list ensures that the user
can find the most relevant information at rank 1, which can
be a DT if the query is more abstract or high level. Thus,
users can express queries at the level of abstraction or prob-
lem knowledge suitable to them and expect to find relevant
information (in the form of DTs or solution documents) at
the top of the result set.

5. ALGORITHMS FOR INTERLEAVED RE-
TRIEVAL

Interleaved retrieval necessitates a combined ranking of
diagnostic trees and solution documents together in a sin-
gle ranked list. In this section, we present algorithms for
ranking trees and documents together.

Since a diagnostic tree is not a document, but a logi-
cal collection of (solution) documents addressing the same
problem, we do not index them directly as we would index
documents. We derive the ranking of diagnostic trees us-
ing the ranks of the solution documents contained by the
trees.2 Our ranking scheme is based on simple concept that
if we know how to derive rank of a one level tree by us-
ing ranks of its leaves then we can derive the rank of any
complex tree by using the ranks of its leaves. Therefore, we
treat one level tree as building block for our purpose and
develop the axioms for ranking using this. For this, we first
define the concept of canonical form of a one level tree as
follows. Suppose we have a one level tree with n leaves and
a score vector of (r1, r2, . . . , rn) for these leaves. The canon-
ical form of this tree is another one level tree which also has
the same set of n leaves but the score of each leaf is equal
to the average score of all the leaves in the given tree (that
is, 1

n

∑n
i=1 ri. Figure 5 illustrates this idea. By using this

Figure 5: Canonical form of a tree

definition of canonical form, we put forward 5 (heuristic)
axioms that need to be satisfied by any ranking scheme for
computing relevance of a diagnostic tree given the relevance
scores of solution documents contained by the tree. The 5
axioms are as follows:

• Boundary Condition: For a diagnostic tree T with
just two nodes - i.e. a root node and a leaf node con-
taining a solution document, the score of the tree T
must be equal to the score of the solution document r.

2In this context, by ranking of a solution document, we mean
the relevance ranking score of a solution document assigned
by the usual search algorithm that underlies the search ap-
plication.



• Score Monotonicity: Consider the case of two diag-
nostic trees A and B with the same number of leaves
but with different sets of solution documents belong-
ing to these leaves. For a given search query q, we
compute the relevance score of all solution documents
and convert the trees into their respective canonical
forms as shown in Figure 6. In this scenario, tree A
must receive a higher relevance score than tree B. In
other words, the relevance score of a diagnostic tree
monotonically increases with the scores of leaves in its
canonical form.

Figure 6: Illustration of Score Monotonicity axiom

• Size Monotonicity Consider the case of two diagnos-
tic trees A and B with different number of leaves and
different sets of solution documents belonging to these
leaves. For a given search query q, we compute the rel-
evance scores of all the solution documents and convert
the trees into their respective canonical forms as shown
in Figure 7. In this scenario, the tree A must receive
a higher relevance score than tree B. In other words,
the relevance score of a diagnostic tree monotonically
increases with number of leaves in its canonical form.

Figure 7: Illustration of Size Monotonicity axiom

• Distribution of Relevance Scores Consider the case
of two diagnostic trees A and B with the same number
of leaves but with different sets of solution documents
belonging to these leaves. For a search query q, sup-
pose the relevance scores of solution documents in tree
A are more uniformly distributed than the relevance
scores of solution documents in tree B, then the tree
A must receive a higher score than tree B. This idea is
explained in Figure 8 where we have shown trees A and
B along with their canonical forms (which is the same
for both A and B). The assumption is that the infor-
mation contained in A will be more useful in resolv-
ing user problems, since there is a greater uncertainty
(similar scores) among all the solution documents at
the leaf nodes for A and letting users iteratively choose
from among these might be effective.

• Identical Scales This axiom says that the scale on
which the relevance ranking of the diagnostic trees are
being computed must be same as the scale on which

Figure 8: Illustration of Distribution of Relevance
Scores axiom

the relevance ranking score of the solution documents
is being computed by the usual search algorithm.

5.1 A Ranking Scheme
In this section, we describe an instance of a ranking scheme

which will rank the solution documents corresponding to a
search query along with the diagnostic items (the root nodes
of the tree shown in Figure 3) in a single ranked list while
satisfying all the axioms discussed earlier. The high level
idea behind this scheme is as follows. The ranking scheme
iteratively starts from leaves of a diagnostic tree and pro-
ceeds upwards towards the root. In each iteration, it com-
putes the relevance scores of only those internal nodes which
themselves are not leaves and whose children are all leaves.
In the next iteration, all such internal nodes become the
leaves of the tree and the process repeats. Thus, in each it-
eration, it computes the relevance score of only those nodes
which are roots of one level trees. Also, while computing
the the relevance scores of one level trees, the algorithm en-
sures that all the 5 axioms are satisfied. In what follows, we
discuss this scheme in more detail.

Let us assume that we have already run some standard
search algorithm and retrieved a ranked list of the solution
documents in response to the search query. Let us assume
that in this list, the solution documents are arranged in de-
creasing order of the relevance score (which is number in
between 0 and 1). Now for each diagnostic tree assign a
score to each of its leaf node. Recall that the leaf node of a
diagnostic tree is a solution document. Therefore, the score
of the leaf will be the same as the relevance score of this
solution document if it is present in the ranked list retrieved
earlier otherwise it will be zero. See Figure 3 for an exam-
ple. Use the relevance scores of all the leaves to compute
a relevance score of the root node which will be the rele-
vance score of the diagnostic tree. Now use this score of the
diagnostic tree to rank it along with the other solution doc-
uments. Thus, the crux of whole algorithm lies in designing
the scheme for computing the relevance score of the root
node given the relevance scores of all the leaf nodes.

The Diagnostic-Tree-Relevance algorithm shown as
Algorithm 5.1 below is one possible algorithm for computing
the relevance score of a diagnostic tree root from the give
relevance scores of its leaf nodes. In this algorithm following
are the input quantities.

1. The diagnostic tree T

2. The relevance scores of all the leaf nodes, say - r1, . . . , rk,
where 0 ≤ ri ≤ 1∀i = 1, . . . , k

3. Weight Factor - β

This algorithm scans the given tree in a bottom up fashion
starting from leaves and moving towards the root. At each



Algorithm 1 Diagnostic-Tree-Relevance

Procedure Diagnostic-Tree-Relevance
(T, r1, . . . , rk, β)

1: n ← total number of the nodes in the tree T
2: if n > 1 then
3: l ← a leaf node of tree T
4: S ← the set of all the sibling nodes of l
5: if (all the nodes in set S are leaf nodes) then
6: p ← parent node of node l
7: rl ← relevance score of node l
8: RS ← relevance scores vector of all nodes in S
9: rp ← One-Level-Tree-relevance (rl, RS , β)

10: delete all the nodes in S and node l from tree T
11: make node p as leaf node
12: n ← (n− |S| − 1)
13: else
14: l ← a node in S which is not a leaf node
15: Go to line number 4
16: end if
17: else
18: Return the relevance score of the remaining root node
19: Stop
20: end if

iteration, the algorithm identifies a subtree within the given
tree which is just one level tree. The algorithm computes
the relevance score of this one level subtree by making use of
another subroutine One-Level-Tree-Relevance(.) given
in Algorithm 5.1. It is easy to verify that the expression

Algorithm 2 One-Level-Tree-Relevance

Procedure One-Level-Tree-Relevance
(r1, . . . , rm, β)

1: if m = 1 then
2: return r1

3: else
4: R ← ∑m

i=1 ri

5: Compute the entropy E of the tree as follows

E ←
(
−

m∑
i=1

ri

R
log

ri

R

)

6: Normalize the entropy as follows: E ← E/log m
7: Compute the average score A of a node as follows

A ← R/m
8: Compute the relevance score φ of the tree as follows

φ = A + (1−A)(βE + (1− β)(1− 1
2m ))

9: return φ
10: end if

used for computing the relevance score φ in Algorithm 5.1
satisfies all the axioms discussed earlier. For example,

1. The if statement takes care of the boundary condition
axiom.

2. The first term of the expression for φ (i.e A) satisfies
the requirements of the score monotonicity axiom.

3. The quantity (1− 1
2m ) satisfies the requirement of the

size monotonicity axiom.

4. The quantity E satisfies the requirements of the dis-
tribution of relevance scores axiom.

5. The way we have developed the formula for φ satisfies
the requirements of the identical scale axiom.

It is also easy to verify that the time complexity of the Al-
gorithm 5.1 is O(n).

6. EXPERIMENTS
In this section, we present results comparing interleaved

retrieval of diagnostic trees and solution documents with
retrieval of only solution documents.

For our experiments, we used a commercially available
knowledge content database as our corpus. This database
consists of 56,537 solution documents related to variety of
software (e.g. Microsoft Excel, Microsoft Office, etc.) as
well as hardware related problems that can be faced by typ-
ical IT users. Each document consists of the title of the
problem and a step-by-step procedure to fix that problem.
In our experimental setup, we first indexed all these 56,537
documents by making use of Apache Lucene APIs. 3. Note
that this indexing is a one time operation.

We manually created 34 diagnostic trees using 1,333 doc-
uments out of 1,762 solution documents in the corpus that
address problems related to using Microsoft Excel XP soft-
ware. Each tree was designed to address a specific kind
of problem. For simplicity, we just created one level trees
where the root of the tree had a text description of an ab-
stract problem and the leaf nodes were the solution docu-
ments from the corpus which addressed some aspect of that
problem. A few sample text descriptions of the roots of the
trees are given below.

• Excel XP - How do I ? - Adding/Removing

• Excel XP- How do I ? - Viewing/Displaying

Total number of leaves across all the trees were 1,366. On
an average, each diagnostic tree contained 40 solution doc-
uments as leaf nodes.

Finally, we developed an interface for searching the solu-
tion documents in the corpus. In response to user queries,
the following steps get executed in the background - (1)
Search is performed using Lucene APIs and the relevant
solution documents are retrieved in the form of a list. In
this list, each solution document consists of the title and a
URL of the document. (2) The program iterates over the
retrieved list and for each solution document, it finds all the
trees (which we have annotated in the previous step) that
have this document as one of the leaf. The program assigns
the relevance score of this document (as given by Lucene)
to each of these leaf nodes. (3) For each tree, if there is a
leaf which does not appear in the retrieved list then its score
is assigned to as 0. (4) The relevance score of each tree is
computed using Algorithm 5.1 with β = 0.9.

Once the background calculation is over, we present the
search results to users as two ranked lists placed next to each
other. In left hand side list, we just present the solution doc-
uments returned by Lucene in the decreasing order of their
relevance scores. In the right hand side list, we present the
list of interleaved diagnostic trees and solution documents
where we rank the diagnostic trees along with solution doc-
uments based on their relevance scores computed earlier. We
asked users to select the documents (and trees) relevant to

3Apache Lucene is an open source text search engine library.
URL - http://lucene.apache.org/java/docs/



their queries in each of these two lists. When users submit
their feedback, we log the feedback in a database. Note that
in the case of right hand side list, if an entry is a tree then
we don’t provide the option for the user to specify which
leaf nodes are relevant and which are irrelevant. Instead, we
just provide the option for the user to specify whether the
tree as a whole is relevant or not.

We collected user relevance feedback from 7 different users
as described above. These users were instructed to search
for problems related to Microsoft Excel XP. For each search
query, we presented 10 results in both left hand and right
hand lists. Each entry in the result set had a mention of the
title and a link to the document. For trees, each entry has a
textual description of its root that unfolds into a view show-
ing the leaf nodes when a user clicks on it. We asked users
to give feedback about the relevance of each document/tree
in both the result lists.

The objective of this experiment was to determine the
extent of improvement, if any, that can be obtained by re-
trieving diagnostic trees along with solution documents. We
computed the following measures for both interleaved re-
trieval of trees and documents and standard retrieval of only
solution documents:

• Mean Precision (MP) at position i where i = 1, 2, . . . , 10

• Mean Average Precision (MAP)

• Mean Reciprocal Rank (MRR)

The mean precision at position i is the same as the mean of
(single query precisions at position i) across all the queries.
MAP is the mean of (single query average precisions) across
all the queries. MRR is the mean of (1/rank of first relevant
document for the single query) across all the queries.

We collected user relevance feedback for 65 queries from
a set of 7 users on the topic of Microsoft excel XP as de-
scribed above. For this data set, we computed the above
three performance metrics for both the cases separately -
when we allow interleaving of the diagnostic trees and when
we do not allow interleaving. The results are summarized in
Tables 1 and 2.

Position MP without Trees MP with Trees Gain
1 0.461538 0.492307 +06.66%
2 0.376923 0.415384 +10.20%
3 0.343589 0.364102 +05.97%
4 0.315384 0.326923 +03.65%
5 0.283076 0.292307 +03.26%
6 0.264102 0.271794 +02.91%
7 0.243956 0.252747 +08.25%
8 0.236538 0.253846 +07.31%
9 0.222222 0.237606 +06.92%
10 0.210769 0.232307 +10.21%

Table 1: Mean Precision (MP) at each position

7. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this paper, we propose algorithms for uniform, inter-
leaved retrieval of solution documents and diagnostic trees
for self help portals. Diagnostic trees are often used to codify

MAP without Trees MAP with Trees Gain
0.314041 0.315341 +0.41%

MRR without Trees MRR with Trees Gain
0.562222 0.578504 +2.89%

Table 2: Mean Average Precision (MAP) and Mean
Reciprocal Rank (MRR)

the diagnostic steps in narrowing down an imprecise query to
a specific solution document. Uniform interleaved retrieval
can be especially beneficial when user queries are imprecise
or vague.

We described an axiom based approach to compute the
relevance scores of diagnostic trees by using the scores of so-
lution documents. Our initial experiments with a corpus of
documents on Microsoft Excel XP show that interleaved re-
trieval of solution documents and diagnostic trees improves
the precision up to 10% over retrieval of only solution doc-
uments.

8. REFERENCES
[1] A. Altman and M. Tennenholtz. On the axiomatic

foundations of ranking systems. In 19th International
Joint Conference on Artificial Intelligence - IJCAI05,
pages 917–922, 2005.

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
Information Retrieval. ACM Press / Addison-Wesley,
1999.

[3] W. J. Hopp, S. M. Iravani, and B. Shou. Performance
improvement diagnostic tree for serial manufacturing
environments. In 2005 NSF DMII Grantees Conference,
Scottsdale, Arizona, 2005.

[4] D. Tong, C. Jolly, and K. Zalondek. Diagnostic tree
design with model-based reasoning. In IEEE Automatic
Testing Conference - AUTOTESTCON’89, pages
161–167, Philadelphia, PA, USA, 1989.


