
October 24, 2017
RT0981
Computer Science; Life Sciences 18 pages

Research Report

FBWTMEM : computing maximal exact matches with FBWT

Masaru Ito, Hiroshi Inoue, Megumi Ito and Moriyoshi Ohara
IBM Research - Tokyo
IBM Japan, Ltd.
19-21, Nihonbashi Hakozaki-cho
Chuo-ku, Tokyo 103-8510 Japan

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

“main” — 2017/10/24 — page 1 — #1

FBWTMEM : computing maximal exact matches with FBWT 1

Abstract - Finding maximal exact matches (MEMs) is an important
building block of many workloads including genome alignment. Hence its
acceleration has a great impact on genome alignment and genome analysis
workloads. In this paper, we developed a new algorithm, FBWTMEM,
for this task, and experimentally showed that our algorithm outperforms
previous ones. We achieved 1) a smaller memory footprint by using a
recently-proposed data structure called FBWT and 2) a faster execution
time by adaptively tuning the skip parameter.

1 Introduction
Maximal exact matches (MEMs) are exact matches between two sequences
that do not match when lengthened from either the left or right side.
MEM computation is an important task in sequence alignment and genome
comparison.

Recent MEM-finding studies use index methods. The merit of this
approach is the reusability of an index. However, the runtime memory
consumption of the index is large, so recent studies have been trying to
reduce it. Early studies based on index use suffix trees (Kurtz et al. (2004))
or enhanced suffix arrays (ESAs) (Abouelhoda et al. (2004)), but these
application uses vast amounts of memory.

Sparse suffix arrays were used by Khan et al. (2009) to develop their
algorithm, sparseMEM. A sparse suffix array consists of every K-th
suffix of sequence. Their algorithm achieved a smaller memory footprint
and shorter execution time than previous works. After sparseMEM,
additional algorithms were proposed such as backwardMEM (Ohlebusch
et al. (2010)) based on compressed suffix arrays, essaMEM (Vyverman
et al. (2013)), based on enhanced sparse suffix arrays (ESSAs), slaMEM
(Fernandes and Freitas (2014)), based on SSILCP, and EMEM (Khiste
and Ilie (2015)), based on hashes. EMEM is the most efficient when the
minimal MEM length is long, and for relatively short MEMs, the most
efficient algorithm is essaMEM. essaMEM improved upon sparseMEM’s
design using ESSA, introduced skip parameters, and has a great impact
on execution time. However, we found that the default skip parameter
proposed by them is insufficient to achieve optimal performance, so we
developed an improved optimization method.

In regard to memory consumption, FM-index (Ferragina and Manzini
(2005)) can dramatically reduce it if the characters that appear in reference
are similar to a genome. FM-index uses Burrows-Wheeler transform
(Burrows and Wheeler (1994)), and we recently proposed a new index
structure called fragmented Burrows-Wheeler transform (FBWT) (Ito et al.
(2016)), which is an extension of BWT that consumes the same memory
footprint.

In this article, we further optimize the sparse suffix array approach.
We demonstrate the possibility of using FBWT to keep competitive
performance with less memory, and report on our findings of further
optimization of the skip parameter. These findings led our approach to
alternative solutions to previous works for short and long MEMs. The
experimental result shows our approach is more efficient than the other
approaches in the view of both memory consumption and execution time.

2 Methods
We based our algorithm (FBWTMEM) on essaMEM with the intention of
improving its performance. The developers of essaMEM implemented two
approaches utilizing child tables and suffix-link simulations, respectively.
As the former was considered to be the most effective approach, we decided
to improve upon that. This section will briefly present our improvements,
and more detailed information is outlined in the Supplementary Material.

We briefly describe the common approaches of essaMEM and
FBWTMEM. An index is created, then MEMs are found by using the
following two steps. First, some query positions for some length l are
matched to find candidates. l can also controls the number of positions of
the query, which starts the procedure to find MEMs. A larger l equals more
positions, which leads to a slower execution. MEMs are finally extracted
from the candidates. The second step is proportional to occurrence. The l

parameter controls the trade off between the second step, the number of
procedures, and the first step. When l is small, the number of positions
to start procedures is small and leads to faster executions, but the second
step becomes large because the number of candidates also increases. On
the other hand, if l is large, the second step can be small, but the number
of positions increases and leads to slower executions.

We describe two major improvements in our algorithm. One is its
data structure and the other is the dynamic change of the skip parameter
introduced in essaMEM. The first improvement affects the reduction of the
index size. essaMEM uses reference genomes (n bytes) and ESSA, which
consists of an LCP array (m · n/k bytes; m is usually between 1 and 2),
sparse suffix array (4n/k bytes), and child array (4n/k bytes), where k is
a sparse parameter. In total, essaMEM uses n+(m ·n+8n)/k bytes. On
the other hand, the index of FBWTMEM is based on FBWT, which is an
extension of BWT, an algorithm for exact matching used in FM-index. The
FBWT-based index consists of an occurrence table (occl/k(c, i)), c table
(Cl/k(c)), and sparse suffix array. The occurrence table returns the number
of occurrences of c in the prefix of lth FBWT, whose length is i�1. The c
table returns the number of characters, which is smaller than c in lth FBWT.
In our implementation, FBWTMEM uses 4n/k bytes for the sparse suffix
array, n/2 bytes for the reference genome, and 3n/8 + 4 · 4 · n/128
bytes for the occurrence table and c table (o(n)). We encode the reference
genome to 4-bit characters. The occurrence table consists of a sampled
occurrence table in every 128 elements and 3-bit encoded nucleotides.
When we access the occurrence table, we sum up the nucleotides and add
the sampled occurrence elements. In total, FBWTMEM uses n+4n/k+

o(n) bytes. As a result, our method uses a smaller amount of memory.
essaMEM also uses a hash table to calculate the suffix array interval of
a specified prefix length of a query. Its key is a 2-bit encoded sequence.
In the case of FBWTMEM, we have to create hash table for each FBWT
sequence, which becomes k times larger. To avoid creating a table larger
than that of essaMEM, we shrink the length of the prefix used for the key
in our experiment. The performance is competitive to essaMEM using this
method. For more details, see section 4 in the Supplementary Material.

The second improvement is the dynamic change of the skip parameter.
essaMEM uses a static skip parameter, which means the length of exact
matching in the first step is static. This approach sometimes affects
performance because the occurrence of candidates depends on data. When
there are many occurrences, the second step requires large execution times,
and it is not good for either essaMEM or our method. A number of results
related to this are in section 4 in the Supplementary Material. To avoid this
phenomenon, we perform further exact matches in the first step to reduce
the candidates. When we increase the exact matching length, additional
MEM-finding procedures must be run, but this improves the performance
in our experiments and the skip parameter tuning cost. For more details,
see section 4 in the Supplementary Material.

3 Experimental Results
We measured the elapsed times of the MEM-finding functions by the
gettimeofday function, and the memory size by read /proc/{$pid}/smaps.
All tests were run on a Red Hat Enterprise Linux Server release 6.6 machine
featuring an Intel Xeon CPU E5-2690 clocked at 2.90GHz with 100GB
of RAM. We evaluated the performance of FBWTMEM against existing
algorithms such as essaMEM, backwardMEM, slaMEM, and EMEM. We

“main” — 2017/10/24 — page 2 — #2

2 Ito, M. et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 3 4 5 6 7 8 9 10 11 12 13

E
x
ec

u
ti

on
 t

im
e

[s
]

Memory footprint [GB]

FBWTMEM
essaMEM

EMEM
slaMEM

Fig. 1. Plot comparing time and memory footprint computing MEMs between Mus musculus
(mm10) and Human genome (hg19). Minimal MEM length is 100

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 4 6 8 10 12 14 16 18

E
x
ec

u
ti

on
 t

im
e

[s
]

Memory footprint [GB]

FBWTMEM
essaMEM

EMEM
slaMEM

Fig. 2. Plot comparing time and memory footprint computing MEMs between Human genome
(hg10) and chimpanzee (panTro3). Minimal MEM length is 100

used 7 datasets that included several Mbp and Gbp genome sequences, but
we did not measure Gbp datasets for backwardMEM because we expected
it would be extremely slow. We used the largest possible skip parameter
value s for FBWTMEM. Our method demonstrated great performance
for all datasets. The results of the mm10 versus hg19 and mm10 versus
panTro3 datasets will be shown in this article. The other results can be
found in the Supplementary Material. For the presented datasets, we set
the hash key length to 10 and k set in the range (3, 4, 8, 16, 32, 64). The
threshold switching for direct comparison with the reference in the second
step of the algorithm was 10, and the threshold to decrease the s parameter
in the first step of the algorithm was 10. For essaMEM, we used the optimal
value s, the hash length was 10, and the K parameter is set to the same
as above. For slaMEM and EMEM, we used -n option, which means
to deal with nucleotides only. FBWTMEM has a better or competitive
performance against the other algorithms for all data sets. In mm10 versus
hg19 genome, FBWTMEM has the best performance. Our method is twice
as fast as EMEM and three times as fast as essaMEM in comparable
memory. The fastest sample in FBWTMEM was 1.8 times faster than
that in essaMEM. When k is 16, 32 or 64, FBWTMEM uses almost same
memory. This is because the sparse parameter does not influence the total
memory size due to a much smaller suffix array than the occurrence table
and reference. In hg19 versus panTro3 genome, FBWTMEM has the better
performance. Our method is four times faster than EMEM and 1.9 times
faster than essaMEM. However, the fastest sample in FBWTMEM was
only 1.03 times faster than that in essaMEM.

Table 1 shows each dataset’s properties. We were concerned that our
algorithm would be slower when there are many MEMs because the second
step of algorithm is not efficient compared with essaMEM. This discussion

Table 1. Datasets property. seq1 is indexed sequence and second column is
its size, seq2 is query sequence and forth column is its size, MEM len means
minimal length of MEMs

seq1 size[bp] seq2 size[bp] MEM len # of MEMs
hg19 3.1G panTro3 3.2G 100 132M

mm10 2.7G hg19 3.1G 100 554k

is in section 2.2 in the Supplementary Material. In hg19 versus panTro3,
there are 240 times more occurrences than hg19 versus mm10, and the
relative performance of FBWTMEM becomes lower than that of essaMEM
as we described above. This fact indicates that FBWTMEM is inadequate
with large occurrences of MEMs, but our method is useful for real world
datasets seeing other datasets. A similar phenomenon can be found in the
Drosophila datasets shown in the Supplementary Material.

4 Conclusion
FBWTMEM is more efficient than previous works for real datasets. It
achieves a smaller memory footprint than that of essaMEM, is competitive
to EMEM, and performs faster than previous works using default
parameters. There is a concern about a performance decrease with many
MEM occurrences, but our tests show that FBWTMEM is useful. Our
algorithm performs well even when the genome is large, so it is valuable
for future large-genome analysis.

“main” — 2017/10/24 — page 3 — #3

FBWTMEM : computing maximal exact matches with FBWT 3

References
Abouelhoda, M. I., Kurtz, S., and Ohlebusch, E. (2004). Replacing suffix trees with

enhanced suffix arrays. volume 2, pages 53–86.
Burrows, M. and Wheeler, D. (1994). A block sorting lossless data compression

algorithm. SRC Research Report, (124).
Fernandes, F. and Freitas, A. T. (2014). slamem: efficient retrieval of maximal exact

matches using a sampled lcp array. Bioinformatics, 30, 464–471.
Ferragina, P. and Manzini, G. (2005). Indexing Compressed Text. Journal of ACM,

52(4), 552–591.
Ito, M., Inoue, H., and Taura, K. (2016). Fragmented BWT: An Extended BWT

for Full-Text Indexing. Proceedings of the 23rd Annual Symposium on String
Processing and Information Retrieval., pages 97–109.

Khan, Z., Bloom, J. S., Kruglyak, L., and Singh, M. (2009). A practical algorithm
for finding maximal exact matches in large sequence datasets using sparse suffix

arrays. Bioinformatics, 25, 1609–1616.
Khiste, N. and Ilie, L. (2015). E-MEM: efficient computation of maximal exact

matches for very large genomes. Bioinformatics, 32(4), 509–514.
Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., and

Salzberg, S. L. (2004). Versatile and open software for comparing large genomes.
Genome Biology, 5(R12).

Ohlebusch, E., Gog, S., and Kügel, A. (2010). Computing matching statistics and
maximal exact matches on compressed full-text indexe. Proceedings of the 17th
Annual Symposium on String Processing and Information Retrieval., 21, 347–358.

Vyverman, M., Baets, B. D., Fack, V., and Dawyndt, P. (2013). essaMEM: finding
maximal exact matches using enhanced sparse suffix arrays. Bioinformatics, 29(6),
802–804.

Supplementary Material

“FBWTMEM : computing maximal exact matches with FBWT”

Masaru Ito ∗, Hiroshi Inoue, Megumi Ito and Moriyoshi Ohara

1 Preliminary

We first annotate some variables. R is the reference sequence, Rk$ is a sequence with an additional character
,$, padded to R until the length becomes a multiple of k. | Rk$ |= n is the length of the Rk$, Rk$[i : j] is
subsequence of Rk$ started from i-th position and end at j-th position of Rk$, Rk$[i] is a i-th character of
Rk$, Q is the query, and | Q |= m is the length of the Q. A maximal exact match (MEM) between R and Q
are common subsequences that cannot be extended from either the left or right side. The MEM-finding task
retrieves the positions of MEMs whose lengths are over L.

1.1 Fragmented Burrows-Wheeler transform

A fragmented suffix array (FSA) is a k sized set of numeric sequences. The k parameter is given by the user.
l-th sequence of FSA (FSAl/k) is a permutation of {i | i = k · q + l, q ∈ N, 0 ≤ i < n}, and has the following
inequality.

Rk$[FSAl/k[i] : n− 1] <lex Rk$[FSAl/k[i+ 1] : n− 1]

(0 ≤ i < n/k − 1) (1)

where a <lex b means b is lexicographically greater than a. We assume that when l < 0 or l >= k, the l-th
sequence is the l mod k sequence.

A fragmented Burrows-Wheeler transform (FBWT) is also a k sized set of sequences defined by the
following equation.

FBWTl/k[i] =

{

Rk$[FSAl/k[i]− 1]
(

FSAl/k[i] > 0
)

Rk$[n− 1]
(

FSAl/k[i] = 0
) (2)

FBWTl/k denotes l-th sequence of FBWT. Figure 1 shows an example of FBWT for “bananabanana” and
the size of FBWT is 3. $ is the smallest character. The left column shows the FSA, and the right column
shows the FBWT. The strings in center column are suffixes. Because $ is the smallest character, any character
after it does not influence the lexicographical order.

The task of searching a query in a text can be described as finding intervals in FSA. Thanks to lexico-
graphical sorting, all suffixes whose prefix matches the query are contiguously located in each FSA. The goal
of searching is to find the intervals whose elements point to suffixes whose prefix is equal to the query, and
get the values of the elements.

We demonstrated that it is possible to find the intervals using FBWT (Ito et al. (2016)), and this process
is called backward search. The following algorithm 1 shows the backward search procedure.

Listing 1: Given character c and interval l-[i..j] corresponding to w in l-th sequence of FBWT,
backwardSearch(c, l-[i..j]) computes interval of cw in l − 1-th sequence of FBWT if it exists, if not, re-
turn ⊥

1 backwardSearch(c,l-[i..j])

1

2 i← Cl/k[c] +Occl/k(c, i− 1) + 1
3 j ← Cl/k[c] +Occl/k(c, j)
4 if i ≤ j then return (l − 1)-[i..j]
5 else return ⊥

Cl/k[c] returns the number of characters smaller than c in l-th FBWT. Occl/k(c, i) returns the number of c
in FBWTl/k[0 : i− 1].

12 $$$bananabanana a

 9 ana$$$bananaban n

 3 anabanana$$$ban n

 6 banana$$$banana a

 0 bananabanana$$$ $

13 $$bananabanana$ $

 7 anana$$$bananab b

 1 ananabanana$$$b b

10 na$$$bananabana a

 4 nabanana$$$bana a

14 $bananabanana$$ $

11 a$$$bananabanan n

 5 abanana$$$banan n

 8 nana$$$bananaba a

 2 nanabanana$$$ba a

FSA0/3 FBWT0/3

FSA1/3 FBWT1/3

FSA2/3 FBWT2/3

Figure 1: FBWT for “bananabanana”

2 Method

2.1 Finding MEMs

Our approach is similar to that of essaMEM. First, we create an index from a reference genome. The size
of the index can be change by the sparse parameter. Then, exact matching from some query positions for
some length l is executed to find candidates. l can also control the number of positions of query, which
starts the procedure. A larger l equals more positions, which leads to a slower execution. MEMs are finally
extracted from the candidates. The second step is proportional to occurrence. The l parameter controls the
trade off between the second step, the number of procedures, and the first step. When l is small, the number
of positions to start procedures is small and leads to faster executions, but the second step becomes large
because the number of candidates also increases. On the other hand, if l is large, the second step can be
small, but the number of positions increases and leads to slower executions.

There are two major differences between our algorithm and essaMEM. One is that our index is based on
FBWT as opposed to an enhanced suffix array in essaMEM. As a result, our index uses less memory than
essaMEM, but we achieve a competitive performance. The other is that our approach dynamically changes
parameter l, while essaMEM maintains it as a static value. When there are a lot of candidates, the second
step reaches a bottleneck. However, the number of candidates depends on the query sequence. A number of
queries have few candidates, but some have many candidates. Hence, we introduce a method to dynamically
change the parameter. We found method has an impact on both execution time and parameter tuning cost.
As a result of the dynamic change, FBWTMEM outperforms essaMEM and others.

2

2.2 Detail of Algorithm

In this section, we first describe the detail of algorithm, and then discuss its time complexity compared to
that of essaMEM. The space complexity is described in the main paper. In the first step, similar to essaMEM,
candidates are found by matching l = L−k ·s+1 characters starting from Q[i] , where k is the size of FBWT
or sparse parameter of essaMEM, and s is the skip parameter introduced in essaMEM. First intervals are
calculated by hash and then calculated by index. After the process starts from Q[i], the next process starts
from Q[i − k · s]. In essaMEM, the next process starts at Q[i + k · s] because it searches forward from the
start, but our method search backward from the end, so the next process starts at Q[i− k · s]. Our method
stores FSA0/k, and we adjust the end of matching at FBWT0/k. While essaMEM fixes a s parameter for
the whole procedure, our algorithm dynamically changes it in accordance with the number of candidates,
which means if there are a lot of candidates, our algorithm can decrease s at that time. A number of MEMs
will be lost when s is decreased, so we start additional MEM-finding procedures with matching L− k · s′ +1
characters from Q[i+ k · (s− s′)] where s′ is the number of times s decreases. When s′ is significantly large,
this step in the additional procedures cannot reduce the number of candidate sufficiently, and can lead to
much slower executions because of the next step. Hence, we decided that s′ would be less than half of s. The
correction is described at the end of this section.

The second step is to determine if the candidates are longer than L and their length. To calculate the
left side, our algorithm uses a backward search like backwardMEM. Once the interval is updated, the next
character of query is compared with characters in FBWT corresponding to the interval. If the character
does not match, the candidate cannot further extend the left side, while if it matches, the candidate can
extend left more. When the number of candidates becomes low enough during the backward search, we halt
the search and switch to directly comparing the candidates to the reference. In our implementation, you
can set this parameter to the ratio of the number of first candidates, in which the maximum value is 1000.
When you set the parameter to 10, FBWTMEM directly compares the candidates to the reference when the
number of candidates becomes under 1% of that of the first candidate. We added this heuristic because it
is reasonable to expect that the interval size rarely changes when the matching length is long. essaMEM
avoids this traversal with no reduction of interval, so this heuristic is needed to outperform essaMEM. After
the left side is calculated, the right side is calculated, and k · s characters between the reference and query
are directly compared. If they match more to those on the right side, the candidate has been extracted by
the previous MEM-finding procedure. Algorithm 2 shows the procedure. collectMEM function is the main
function. Because we have only FSA0/k, we hold the array interval during the calculation. We used c++
vector for the container of the candidates, and the erase method when the candidate is end.

Listing 2: Calculate left side MEM, given 0-[i..j]

1 rightSide(sa, queryStartPos, leftMatchLength)
2 // candidates which match k · s characters are found in previous MEM search
3 for itr in [sa..sa+ k · s]
4 if query[queryStartPos+ itr − sa]! = reference[itr] then // compare reference and query
5 if leftMatchLength+ L− k · s+ 1 + itr − sa ≥ L then
6 MEM.push(sa,leftMatchLength + L − k\cdot s + 1 + itr − sa) // position of MEM and its length
7

8 leftAndRightSide(query, queryPos, candidate, l,matchLength)
9 for sa in candidate

10 // left side match
11 countLeftside = 0
12 while query[queryPos− countLeftside] == reference[sa− countLeftside]
13 countLeftside++
14 rightSide(sa+matchLength, queryPos+matchLength,matchLength+ countLeftside)
15
16

17 checkCandidates(c, l-[i..j], queryStartPos, leftMatchLength)
18 for itr in [i..j]
19 if FBWTl/k[itr] = c then // this candidate can not extend to left
20 nextCandidateSA.push(currentCandidateSA[itr − i])
21 else // this candidate can extend more to left
22 rightSide(currentCandidateSA[itr − i], queryStartPos, leftMatchLength)

3

23 return nextCandidateSA
24

25 collectMEM (0-[i..j], queryStartSearchPos)
26 l-[i..j]← 0-[i..j]
27 candidate← FSA0/k[i..j]
28 queryPos← queryStartSearchPos
29 while !candidate.empty()
30 if (∗j − i + 1 <= directlyCompareThreashold∗)
31 leftAndRightSide(query, queryPos, candidate, l, queryStartSearchPOs− queryPos)
32 return

33 else

34 candidate← checkCandidates(query[queryPos], l-[i..j],
candidate, queryStartSearchPos− queryPos)

35 l-[i..j]← backwardSearch(query[queryPos], l-[i..j])
36 queryPos = queryPos− 1

Next, we discuss the time complexity compared to essaMEM. The first step of the algorithm is to traverse
FBWT, so its time complexity is O(L − k · s + 1). The last step needs to check all elements in the interval
after traversing FBWT, so the time complexity is bound by the total number of occurrences. We assume
that m is the maximal matching length, in which the worst case is when the interval size does not decrease
until the matching length reaches m. The worst time complexity is O(m · occ), where occ is the first interval
size, while that of essaMEM is O(m + occ). The time complexity is the same as that of essaMEM in the
first step but worse in the second step than that of essaMEM, but our experiments show that our method is
competitive to essaMEM.

The correctness of the algorithm is described in the paper of essaMEM when the s parameter is static,
so we discuss lost MEMs and how to find them when s is decreased. Let’s compare the MEMs that matched
query[i− (L− k · s+1)+ 1 : i] and query[i− (L− k · (s− s′) + 1) + 1 : i] in the first step. The characteristic
of lost MEMs is that they start from query[j] (i− (L− k · (s− s′) + 1) + 1 < j < i− (L− k · s+ 1)) or end
at query[j] (i− (L− k · (s− s′s) + 1) < j < i+ k · s− 1). These MEMs can be found by matching query[i−
L+ k · s : i+ k · (s− s′)] in the first step. Hence, our algorithm can find all MEMs.

2.3 Implementation

We used a suffix array construction implementation from https://sites.google.com/site/yuta256/sais. The
other implementation is our original. You can find our application at https://github.com/MasaruIto/FBWTMEM,
which can be compiled using C++14.

3 Experimental Results

We measured the elapsed times of the MEM-finding functions by the gettimeofday function, and the memory
size by read /proc/{$pid}/smaps. All tests were run on a Red Hat Enterprise Linux Server release 6.6
machine featuring an Intel Xeon CPU E5-2690 clocked at 2.90GHz with 100GB of RAM. We evaluated
the performance of FBWTMEM against existing algorithms such as essaMEM (Vyverman et al. (2013)),
backwardMEM (?), slaMEM (Fernandes and Freitas (2014)) and EMEM (Khiste and Ilie (2015)). MUMmer
(Kurtz et al. (2004)), Vmatch (http://www.vmatch.de/), sparseMEM (Khan et al. (2009)) was outperformed
by essaMEM, so we did not measure them. Table 1 shows the datasets, and Table 2 shows the results of each
algorithms and datasets. We used the largest value of s under L − s · K + 1 ≥ hashLen for FBWTMEM.
For Mbp size genomes, the hash size becomes too large to ignore when the size of FBWT increases, so we
decrease hashLen until the size is under 2 · 411bytes, and we used the k parameter in 1, 2, 4, 8, 16, and 32
if possible. For Gbp datasets, we used hashLen = 10, and the k is in 3, 4, 8, 16, 32, and 64. The threshold
switching to directly compare with the reference in the second step of the algorithm is 10, and the threshold
to decrease the s parameter in the first step of the algorithm is 10. For essaMEM, we used an optimal value
of s, the hash length is 10, and the K parameter is same as above. The command line options are -n, -child 1,
-suflink 0, -kmer 10, -maxmatch and -skip <optimal>. For backwardMEM, we used the K parameter in 1, 2,
4, 8, 16, and 32 if possible for Mbp size genomes, and did not apply it for Gbp genomes. The command line

4

Table 1: Datasets property. MEM len means minimal length of MEMs

id reference size[bp] query size[bp] MEM len # of MEMs average length of MEMs
1 fumigatus 29M nidulans 30M 20 330150 25.9432
2 sapiencs21 46M musculus16 95M 50 586296 55.0137
3 musculus16 95M sapiencs21 46M 50 586296 55.0137
4 simulans 135M sechellia 162M 50 18643313 70.2097
5 melanogaster 140M sechellia 163M 50 2619476 85.9191
6 melanogaster 140M yakuba 162M 50 870653 82.0591
7 hg19 3.1G panTro3 3.2G 100 132368058 127.01
8 mm10 2.7G hg19 3.1G 100 554327 114.753

options are -n and -maxmatch. For EMEM, and the command line option is -n. For slaMEM, the command
line option is -n.

Figures 2, 6, 7, 3, 4, 9, 5 and 8 show the results of each datasets and each algorithm and their param-
eters. FBWTMEM has a better or competitive performance against the other algorithms for all datasets.
Discussions about each algorithm are as follows.

• backwardMEM
backwardMEM was clearly outperformed by other algorithms.

• slaMEM
slaMEM has a competitive performance against FBWTMEM, essaMEM, and EMEM in our datasets.
However, it has a single sample and is not the best for any datasets.

• EMEM
EMEM has a small memory consumption for large lengths of minimal MEMs. In datasets in which
the minimal length of MEMs is 50, EMEM has a competitive performance against essaMEM and
slaMEM, and in Homo sapiencs21 versus Mus musculus16 datasets, it uses the smallest amount of
memory. However, it does not have a best execution time and is outperformed in Gbp datasets in these
experiements. According to the EMEM paper, it can deal with larger datasets, so it is useful for such
genomes.

• essaMEM
essaMEM has a competitive performance against FBWTMEM, but is outperformed in all trials in
comparable memory footprint. In the No. 4 and No. 5 datasets, the fastest sample of essaMEM is
1.15 times faster than our method, while 1.1 times faster in No. 6. In No. 7, described in the paper,
the acceleration ratio shrinks compared to that in No. 8. These datasets have many MEMs compared
to others shown in Table 1. When there are more occurrences, FBWTMEM may be outperformed by
essaMEM, however, FBWTMEM is useful for real datasets.

4 Impact of heuristics

In this section, we discuss the performance of essaMEM and FBWTMEM in detail. For each trial, each
method uses k = 1, hash key length is 10, threshold of switching matching to directly compare with the
reference in step two of the algorithm is 10, threshold of the number of candidates to dynamic reduction of
skip parameter is 10, and all datasets are used. The memory footprint in FBWTMEM is about twice as
small as essaMEM.

Figures 10, 11, 12, 13, 14, 15, 16 and 17 show the results of each dataset for essaMEM with a child
table and no suffix link, FBWTMEM without any heuristics, FBWTMEM with direct compare heuristic,
and FBWTMEM with direct compare heuristic and dynamic skip parameter heuristic. We discuss the

5

comparison of the FBWTMEM heuristics and compare those with essaMEM. First, we describe the impact
of the direct compare heuristic. Comparing the no-heuristic one and the direct-compare-heuristic one, there
is some effect in datasets No. 1, No. 4, No. 5, and No. 6 in figures 10, 13, 14 and 15, while there is little
effect in datasets No. 2, No. 3, No. 7, and No. 8 in figures 11, 12, 16 and 17. The major difference of the
datasets, regardless of effect, is the length of MEMs. Table 1 shows the average length of the MEMs for each
dataset. The datasets having an effect has relatively longer MEMs than the minimal MEM length. Longer
MEMs lead to a longer execution time of the second step of the algorithm. The traverse with FBWT is
memory inefficient, while directly comparing is efficient. This result suggests it is effective when the number
of candidates is small.

Next, the impact of the dynamic skip parameter. The largest skip parameter is not the fastest one in
the no-heuristic one and the direct-compare one. The skip parameter controls the exact matching length in
the first step of the algorithm and can control the trade off between the first and second step. The large
one fails to fully utilize the trade off, but the fastest one depends on the datasets. On the other hand, the
dynamic-skip-parameter one reduces the decrease of performance in the largest skip parameter. Although
the largest one is not always the best, you can achieve a better performance.

Finally, we compare our algorithms with essaMEM. The no-heuristic and direct-compare FBWTMEM
outperforms or competes with essaMEM with a small skip parameter. However, with a large parameter,
FBWTMEM is usually outperformed. However, the dynamic one outperforms essaMEM with all samples.
essaMEM has the same phenomenon in the largest skip parameter, so it can be competitive to our method
if it uses the dynamic skip parameter. However, our method uses less than twice that of essaMEM, so our
method is more useful.

References

Fernandes, F. and Freitas, A. T. (2014). slamem: efficient retrieval of maximal exact matches using a sampled lcp array. Bioinformatics,
30, 464–471.

Ito, M., Inoue, H., and Taura, K. (2016). Fragmented BWT: An Extended BWT for Full-Text Indexing. Proceedings of the 23rd Annual

Symposium on String Processing and Information Retrieval., pages 97–109.

Khan, Z., Bloom, J. S., Kruglyak, L., and Singh, M. (2009). A practical algorithm for finding maximal exact matches in large sequence
datasets using sparse suffix arrays. Bioinformatics, 25, 1609–1616.

Khiste, N. and Ilie, L. (2015). E-MEM: efficient computation of maximal exact matches for very large genomes. Bioinformatics, 32(4),
509–514.

Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg, S. L. (2004). Versatile and open software
for comparing large genomes. Genome Biology, 5(R12).

Vyverman, M., Baets, B. D., Fack, V., and Dawyndt, P. (2013). essaMEM: finding maximal exact matches using enhanced sparse suffix
arrays. Bioinformatics, 29(6), 802–804.

6

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600 1800

E
x
ec

u
ti

on
 t

im
e

[s
]

Memory footprint [MB]

FBWTMEM
essaMEM

EMEM
slaMEM

backwardMEM

Figure 2: No. 1 dataset comparing time and memory footprint of MEMs computed between Aspergillus
fumigatus versus Aspergillus nidulans. Minimal MEM length is 20

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800

E
x
ec

u
ti

on
 t

im
e

[s
]

Memory footprint [MB]

FBWTMEM
essaMEM

EMEM
slaMEM

backwardMEM

Figure 3: No. 2 dataset comparing time and memory footprint of MEMs computed between Homo sapiencs
21 and Mus musculus 16. Homo sapiencs 21 is indexed. Minimal MEM length is 50

7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 100 200 300 400 500 600 700 800 900 1000 1100 1200

E
x
ec

u
ti

on
 t

im
e

[s
]

Memory footprint [MB]

FBWTMEM
essaMEM

EMEM
slaMEM

backwardMEM

Figure 4: No. 3 dataset comparing time and memory footprint of MEMs computed between Mus musculus
16 and Homo sapiencs 21. Mus musculus 16 is indexed. Minimal MEM length is 50

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200 1400 1600

E
x
ec

u
ti

on
 t

im
e

[s
]

Memory footprint [MB]

FBWTMEM
essaMEM

EMEM
slaMEM

backwardMEM

Figure 5: No. 4 dataset comparing time and memory footprint of MEMs computed between Drosophila
simulans and sechellia. Minimal MEM length is 50

8

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600 1800

E
x
ec

u
ti

on
 t

im
e

[s
]

Memory footprint [MB]

FBWTMEM
essaMEM

EMEM
slaMEM

backwardMEM

Figure 6: No. 5 dataset comparing time and memory footprint of MEMs computed between Drosophila
melanogaster and sechellia. Minimal MEM length is 50

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800

E
x
ec

u
ti

on
 t

im
e

[s
]

Memory footprint [MB]

FBWTMEM
essaMEM

EMEM
slaMEM

backwardMEM

Figure 7: No. 6 dataset comparing time and memory footprint of MEMs computed between Drosophila
melanogaster and yakuba. Minimal MEM length is 50

9

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 4 6 8 10 12 14 16 18

E
x
ec

u
ti

on
 t

im
e

[s
]

Memory footprint [GB]

FBWTMEM
essaMEM

EMEM
slaMEM

Figure 8: No. 7 dataset comparing time and memory footprint of MEMs computed between Human genome
(hg19) and Chimpanzee (panTro3). Minimal MEM length is 100

 0

 1000

 2000

 3000

 4000

 5000

 6000

 3 4 5 6 7 8 9 10 11 12 13

E
x
ec

u
ti

on
 t

im
e

[s
]

Memory footprint [GB]

FBWTMEM
essaMEM

EMEM
slaMEM

Figure 9: No. 8 dataset comparing time and memory footprint of MEMs computed between Mus musculus
(mm10) and Human genome (hg19). Minimal MEM length is 100

10

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10

E
x
ec

u
ti

on
 t

im
e

[s
]

skip parameter

Dynamic skip and direct compare in FBWTMEM
Static skip and direct compare in FBWTMEM

No heuristic in FBWTMEM
essaMEM

Figure 10: No. 1 dataset comparing time and skip parameter. essaMEM with child table not suffix link,
FBWTMEM without any heuristics, FBWTMEM with direct compare heuristic, and FBWTMEM with
direct compare heuristic and dynamic skip parameter heuristic. essaMEM and all FBWTMEM trials uses 1
as sparse parameter. The default parameter is the skip parameter in the dynamic one.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40

E
x
ec

u
ti

on
 t

im
e

[s
]

skip parameter

Dynamic skip and direct compare in FBWTMEM
Static skip and direct compare in FBWTMEM

No heuristic in FBWTMEM
essaMEM

Figure 11: No. 2 dataset comparing time and skip parameter. essaMEM with child table not suffix link,
FBWTMEM without any heuristics, FBWTMEM with direct compare heuristic, and FBWTMEM with
direct compare heuristic and dynamic skip parameter heuristic. essaMEM and all FBWTMEM trials uses 1
as sparse parameter. The default parameter is the skip parameter in the dynamic one.

11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

E
x
ec

u
ti

on
 t

im
e

[s
]

skip parameter

Dynamic skip and direct compare in FBWTMEM
Static skip and direct compare in FBWTMEM

No heuristic in FBWTMEM
essaMEM

Figure 12: No. 3 dataset comparing time and skip parameter. essaMEM with child table not suffix link,
FBWTMEM without any heuristics, FBWTMEM with direct compare heuristic, and FBWTMEM with
direct compare heuristic and dynamic skip parameter heuristic. essaMEM and all FBWTMEM trials uses 1
as sparse parameter. The default parameter is the skip parameter in the dynamic one.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40

E
x
ec

u
ti

on
 t

im
e

[s
]

skip parameter

Dynamic skip and direct compare in FBWTMEM
Static skip and direct compare in FBWTMEM

No heuristic in FBWTMEM
essaMEM

Figure 13: No. 4 dataset comparing time and skip parameter. essaMEM with child table not suffix link,
FBWTMEM without any heuristics, FBWTMEM with direct compare heuristic, and FBWTMEM with
direct compare heuristic and dynamic skip parameter heuristic. essaMEM and all FBWTMEM trials uses 1
as sparse parameter. The default parameter is the skip parameter in the dynamic one.

12

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40

E
x
ec

u
ti

on
 t

im
e

[s
]

skip parameter

Dynamic skip and direct compare in FBWTMEM
Static skip and direct compare in FBWTMEM

No heuristic in FBWTMEM
essaMEM

Figure 14: No. 5 dataset comparing time and skip parameter. essaMEM with child table not suffix link,
FBWTMEM without any heuristics, FBWTMEM with direct compare heuristic, and FBWTMEM with
direct compare heuristic and dynamic skip parameter heuristic. essaMEM and all FBWTMEM trials uses 1
as sparse parameter. The default parameter is the skip parameter in the dynamic one.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40

E
x
ec

u
ti

on
 t

im
e

[s
]

skip parameter

Dynamic skip and direct compare in FBWTMEM
Static skip and direct compare in FBWTMEM

No heuristic in FBWTMEM
essaMEM

Figure 15: No. 6 dataset comparing time and skip parameter. essaMEM with child table not suffix link,
FBWTMEM without any heuristics, FBWTMEM with direct compare heuristic, and FBWTMEM with
direct compare heuristic and dynamic skip parameter heuristic. essaMEM and all FBWTMEM trials uses 1
as sparse parameter. The default parameter is the skip parameter in the dynamic one.

13

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 5 10 15 20 25 30

E
x
ec

u
ti

on
 t

im
e

[s
]

skip parameter

Dynamic skip and direct compare in FBWTMEM
Static skip and direct compare in FBWTMEM

No heuristic in FBWTMEM
essaMEM

Figure 16: No. 7 dataset comparing time and skip parameter. essaMEM with child table not suffix link,
FBWTMEM without any heuristics, FBWTMEM with direct compare heuristic, and FBWTMEM with
direct compare heuristic and dynamic skip parameter heuristic. essaMEM and all FBWTMEM trials uses 1
as sparse parameter.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25 30

E
x
ec

u
ti

on
 t

im
e

[s
]

skip parameter

Dynamic skip and direct compare in FBWTMEM
Static skip and direct compare in FBWTMEM

No heuristic in FBWTMEM
essaMEM

Figure 17: No. 8 dataset comparing time and skip parameter. essaMEM with child table not suffix link,
FBWTMEM without any heuristics, FBWTMEM with direct compare heuristic, and FBWTMEM with
direct compare heuristic and dynamic skip parameter heuristic. essaMEM and all FBWTMEM trials uses 1
as sparse parameter.

14

Table 2: Raw results. If there is no sparse option, the result is in the smallest sparse value row, id column
corresponds to table 1, s column is sparse parameter, m means memory, t means time.

id s FBWTMEM backwardMEM essaMEM slaMEM EMEM
m[kB] t[s] m[kB] t[s] m[kB] t[s] m[kB] t[s] m[kB] t[s]

1 1 160336 3.25718 185340 21.5531 311748 5.13078 103902 8.50493 1737204 9.66601
1 2 100196 4.92304 129064 24.3108 182004 10.2135 - - - -
1 4 74544 6.05709 101308 21.9792 117148 17.6888 - - - -
1 8 56316 11.5249 85624 23.0464 84824 27.0931 - - - -
2 1 359688 3.91892 415732 69.9771 718804 6.82268 242768 26.4675 147756 13.2591
2 2 264808 6.00807 324512 72.0369 449296 7.83567 - - - -
2 4 223116 7.69696 277404 67.3246 316504 16.4193 - - - -
2 8 198608 12.2991 256432 68.5254 251168 25.8659 - - - -
2 16 189740 22.035 243068 71.6184 218648 30.6376 - - - -
2 32 179684 41.6963 239164 77.3257 202500 52.6254 - - - -
3 1 561056 2.83641 642008 33.6146 1101932 3.03844 355218 11.8836 282292 10.8333
3 2 366492 3.81551 449796 33.1348 635272 4.59987 - - - -
3 4 273448 6.62356 352536 34.105 402560 7.07815 - - - -
3 8 220980 9.06654 305520 35.7553 286532 16.381 - - - -
3 16 202744 16.4236 280856 44.4799 228668 24.9821 - - - -
3 32 186052 24.447 269052 48.6102 199932 37.5089 - - - -
4 1 713144 28.4086 883168 190.377 1553324 24.6267 445318 59.2582 420412 86.4835
4 2 440076 29.6161 612416 282.054 869928 31.5293 - - - -
4 4 309216 33.8769 478080 356.74 530732 41.0642 - - - -
4 8 238040 45.2837 410828 586.937 362000 98.5661 - - - -
4 16 207196 61.8441 378568 1146.64 277932 120.897 - - - -
4 32 187524 93.6093 361296 2347.93 271816 181.884 - - - -
5 1 737988 15.1045 918620 154.758 1604228 13.1101 521658 44.3435 440868 27.2401
5 2 452864 19.6291 637580 148.15 886024 20.8738 - - - -
5 4 316184 26.0372 498932 177.83 536612 33.4465 - - - -
5 8 241948 37.7353 426820 248.145 366336 56.5269 - - - -
5 16 211260 48.3297 392848 369.858 282512 96.5191 - - - -
5 32 190148 77.7097 374352 673.786 282808 164.884 - - - -
6 1 743516 10.0173 917364 138.215 1606248 11.4272 528110 46.8108 440260 27.2414
6 2 458028 15.4067 654984 141.288 887368 21.3334 - - - -
6 4 322124 20.6658 496032 149.576 536628 36.4029 - - - -
6 8 247772 37.1159 425420 165.848 365744 64.3609 - - - -
6 16 215796 46.0367 390604 197.498 282156 109.382 - - - -
6 32 194072 76.4607 371984 312.328 283360 173.165 - - - -
7 3 7812356 743.703 - - 13899224 763.369 16192772 1080.46 3986952 4227.33
7 4 6801056 688.238 - - 11235108 983.305 - - - -
7 8 5300456 880.633 - - 7272276 1433.1 - - - -
7 16 4598452 1019.19 - - 6130708 3545.58 - - - -
7 32 4346584 2220.56 - - 6130576 3571.39 - - - -
7 64 4420452 4078.09 - - 6130168 6425.84 - - - -
8 3 6671612 241.755 - - 12154212 442.055 9911764 966.823 3697616 1218.62
8 4 5763852 255.093 - - 9826568 661.148 - - - -
8 8 4427284 513.935 - - 6379948 901.597 - - - -
8 16 3807516 619.401 - - 5485792 1888.77 - - - -
8 32 3595876 1759.55 - - 5486632 3092.43 - - - -
8 64 3687192 2632.85 - - 5486496 5428.21 - - - -

15

