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1 Abstract
Graphics Processing Units (GPUs) has been traditionally designed for graphics
applications. There is recent trend in harnessing computational power offered by
GPUs for general purpose computation. Graphics hardware and driver do not ex-
pose general purpose programming language like C to the programmer. So, map-
ping a given computational task to GPUs requires expressing the task in terms
of programming model exposed by GPUs. There has been recent efforts to ex-
pose languages like CUDA (Compute Unified Device Architecture) [12] which
are more tuned towards harnessing GPUs for general purpose computation. How-
ever, traditional graphics oriented APIs like OpenGL [11] for general purpose
computation using GPUs remain popular for portability reasons. Using APIs like
OpenGL for doing general purpose compution on GPUs is challenging and neces-
sitates exploration of several optimization techniques. This report discusses our
experience of implementing two algorithms for 3D CT reconstruction on GPUs
using OpenGL.

2 General Purpose Computing on GPU (GP-GPU)
using OpenGL

2.1 Programming concepts
A typical programming pattern in using OpenGL to carry out general purpose
computation is representing structured (array like) read only input data to the
program as textures, representing read-only non-structured data as the uniform
variable (so called because their value don’t change during the rendering), writ-
ing a vertex program (also called vertex shader) for per vertex operation, writing
a fragment program for per-fragment operation, representing the output data as
the write-only texture attached to the frame-buffer, drawing (rendering) a quadri-
lateral to invoke the computation, reading back the texture attached to the frame
buffer containing the results. The computation is invoked by rendering the quadri-
lateral and there can be only one vertex and/or fragment program for a given ren-
dering pass. So, in one rendering pass the model of computation is data parallel
processing or similar to stream computing model. However, different rendering
pass can have different fragment and vertex shader, so can perform different com-
putation.



• Compute units : OpenGL exposes several hardware features in terms of ver-
tex processors, rasterizer and fragment processors. Some of them are pro-
grammable by the application writer, while other has fixed non-programmable
functionality. Apart from this there are hardwares few more specific hard-
ware supports available for features like z-culling etc.

Vertex Processor : The input to the vertex processors are vertex of the
geometry we are rendering. From the GP-GPU point of view we can look
vertex processor as modifying the per-vertex attributes in a programmable
way. For example, vertex processor can modify the vertex position in the
way programmer wants. Also, it can attach programmer defined per-vertex
attributes.

Rasterizer : Rasterizer is a hardwire computational resource available in
the GPUs. The function of rasterizer is to interpolate the per vertex at-
tributes processed by the vertex processor and make the interpolated values
available to the fragment processor. As is clear, a lots of data correspond-
ing to the fragments is generated which is passed to the fragment proces-
sor. Rasterizer is very beneficial for the applications which requires values
which can be obtained by the interpolation of some boundary values.

Fragment Processor : Fragment processor performs per-fragment opera-
tion and write the processed value to the frame-buffer. It has access to the
interpolated values of the vertex attributes and can gather data from multi-
ple textures. The processing is done in 4-way SIMD corresponding to the
RGBA color channel. The output of the fragment processor is written to the
frame-buffer. The fragment processor naturally exposes the data-parallel or
stream computing model.

• GPU Programming model : The OpenGL exposes data parallel program-
ming model for general purpose computation. The vertex processor can pro-
cess multiple vertices in parallel and similarly, fragment processor can pro-
cess multiple fragments in parallel. The second level of parallelism comes
from the SIMD processing of RGBA data components in fragment proces-
sor.

• Data representation and access : The data storage exposed by OopenGL are
either read only or write only. Read-write data is not available in the same
rendering pass. If we need data feedback (read-write), than multiple passes
are needed along with the technique of ping-pong. In this, the output of the
previous pass is treated as the read-only texture in the next pass.



• Data transfers : Data needs to be transfered bak and forth between GPU
graphics memory and the host. Depending on the application data require-
ments, this can be a performance bottleneck and hence, reuse of data tried
wherever possible.

3 3D CT Reconstruction
This section discuss the 3D CT reconstruction algorithms which we have imple-
mented on GPU. 3D CT reconstruction refers to the technique of reconstruct-
ing the scanned object from the experimental projection obtained using source-
detector setting. Two algorithms were used for in our work on 3D CT reconstruc-
tion :

3.1 Feldkamp and OSC algorithmic details
The details of Feldkamp and OSC algorithms can be looked at [4], [5] and [6]
respectively.

3.2 X86 implementation used
The C implementation used for Feldkamp is exactly the same as described in [7].
However, in OSC [1] instead of using the exact length, the forward projection is
computed by sampling the volume at unit distance across the ray while backward
projection is computed by extrapolation of the difference. The updates are carried
out as per the OSC equation.

4 Implementation details and optimization techniques
This section discuss about the implementation details of Feldkamp and OSC algo-
rithm on GPU. We explain the optimizations carried out and how different GPU
resources have been utilized to get better performance. The following subsection
discuss about the Feldkamp and OSC algorithm for 3D CT reconstruction subse-
quently.



4.1 3D CT reconstruction using Feldkamp algorithm
The mapping of Feldkamp ([7]) algorithm to GPU is trivial and not challenging
due to its data parallel nature. So, we skip its details in the current discussions.

4.2 3D CT reconstruction using OSC algorithm
The pseudo code for our implementation is shown in Algorithm 4.1

Algorithm 4.1 OSC Reconstruction

OSCRun ( currVol, expProj, NUM SUB, MAX ITER )
begin

ComputeEntryExitMaps() ;
InitZeroVoxels() ;
For iter← 0 to ( Convergence or MAX ITER )

For subset← 0 to NUM SUB
ComputeFP( currVol, fpProj, subset, entryExitMap ) ;
ComputeBP( currVol, fpProj, expProj, subset ) ;

End For
End For

end

4.2.1 Forward projection

• Basic Approach : The GPU implementation of the forward projection is
similar to the algorithm used in C implementation as explained in section
3.2. In order to compute the forward projection (FP) value of a projection
point, rays are drawn from the center of the projection point to the source
as shown in Figure 1.

The drawn ray intercept the reconstructed volume with some finite length.
The intersection points on the face of the volume are the entry and exit
points. It is possible that some of the rays don’t intersect the volume, in
which case the FP value for them will be zero. The FP value is computed
by sampling the intercepted ray at unit distance between the entry and exit
points. The FP value is calculated by simply accumulating the intensity val-
ues at the sampled points. Since the intensity is known only the discrete
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Figure 1: Geometry and rays for forward projection

grid points in the volume space, interpolation techniques are needed to get
the value at the sampled points. Two commonly used interpolation tech-
niques are linear interpolation (in this case, trilinear) and nearest neighbor.
Trilinear and nearest neighbor have trade offs in terms of image quality and
computation time. Trilinear interpolation is computationally expensive but
gives better quality image while nearest neighbor is computationally less
expensive but image quality may not be as good as trilinear interpolation
approach.

Algorithm 4.2 shows the psuedo code in the algorithmic terms along with
the comments on the hardware resource utilized.

Algorithm 4.2 OSC Reconstruction : Forward Projection



OSCFP ( currVol, fpProj, subset, entryExitMap )
begin

PackData ( currVol, fpProj ) ;
For ∀ proj ∈ subset

Transfer entry-exit map ;
Set depth buffer ;
Enable depth test ;
Set input values to shaders ;
Render quadrilateral (Invoke computation) ;
Readback FP results ;

end

• Optimizations Several optimizations have been incorporated to harness avail-
able GPU features. This subsection discuss the details of the incorporated
optimizations.

Precomputed Entry and Exit maps : In order to compute the FP value for a
projection point, we need the entry and the exit co-ordinates of the ray in-
side the reconstructed volume. In 3D two co-ordinates (entry and exit) will
require six floating point numbers for each ray. In order to transfer six data
point for each projection we need two input RGBA textures. However, we
observe that the entry and exit co-ordinates inside the volume for a ray can
be computed efficiently by using this entry and exit lengths along with the
end point co-ordinates and total length as shown in Figure 2. This optimiza-
tion reduces the number of data points required to store the entry and exit
lengths to two, reducing the number of input texture requirement to one.

Further, we observe that in the forward projection we don’t need to sam-
ple the volume from entry to the exit inside the volume, rather we need
to sample it from the first non-zero sample value to the last non-zero sam-
ple value. It simply means trimming the leading and lagging zeros while
sampling the volume along the line. This observation is implemented by
editing the entry-exit distance appropriately and as shown in Figure 2. This
optimization is most effective when the actual object in the reconstruction
volume is concentrated around the center of the volume. Further, due to zero
voxel initialization in the backward projection (as discussed later) editing of
the entry and exit maps is required only once.

Texture access optimization by data duplication : The forward projection for
the projection points (rays) are computed in the fragment processors. The
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key inputs are the current volume and the entry-exit map. As mentioned
earlier, sampling of volume is required to compute the forward projection
of a ray and this needs interpolation techniques for discrete volume case.
The trilinear interpolation requires fetching 8 surrounding texture points and
than computing the intensity value as per the interpolation equation. The
nearest neighbor technique is cheaper in terms of both memory fetch and
computation. Since fragment processors are processing several fragment
(rays) in flight, and each such ray may requires several sampling points,
fetching data from graphics textures can be a huge bottleneck particularly
in the case of tri-linear interpolation. The number of memory fetches can be
minimized by duplicating and packing the data as shown in Figure 3. This
reduces six memory fetch (for Trilinear interpolation) required to evaluate
one sampling point to two.
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Figure 3: Data packing for optimized memory accesses

It is evident that this data duplication operation can itself become a per-
formance bottleneck if performed on the CPU. In our experiments, we ob-
served this operation is not a bottleneck on lower end GPUs where GPU
computation of FP dominates the overall computation time, however on
high end GPUs the packing operation itself become a bottleneck if done on
CPU. In our implementation, we offloaded this operation also to GPU using
separate rendering passes.

Data transfer optimizations : This bullet refers to the data transfered from
the CPU memory to the GPU graphics memory. Apart from few constants
(like volume size, projection angle etc.) there are two key data structures
needed by the GPU device to compute FP. First, the current reconstructed
volume which needs to be sampled. Second, the entry-exit map for the
projection. For the first case, the entire volume (represented as a 3D texture)



is transfered once and than it is used for computing the FP values for all the
projections. The data duplication and packing optimization as explained in
previous bullet ensures texture RGBA channels are used to full capacity.
For the second case, the length based computation for entry and exit co-
ordinate requires only one 2D texture, minimizing the data transfer cost.
This transfer is done once for each projection in each iteration.

Z-cull optimization : In FP each of the projection point (or ray) is finally
processed as a fragment in the fragment processor of the GPUs. It is clear
that if the experimental projection value for a particular projection point is
zero than FP value can also be permanently taken as zero. So, for such pro-
jection points (rays) we donot need to compute the FP values by sampling
the volume. This implies that the fragment corresponding to such projec-
tions need not be processed by the fragment processor. The depth test which
is performed by the modern GPUs in hardware is very much suitable to im-
plement this optimization. The key idea here is that the depth component
of the incoming fragments are tested with the depth value given in an input
depth buffer according to a comparison function. If the fragment passes the
depth test than it is processed by the fragment processor, else it is culled
and not allowed to enter the fragment processor. In our case, in the depth
buffer we provide 1.0 value to the depth component for non-zero projec-
tions, while 0.0 value to the zero projections. Rendering is invoked such
that the depth component of each of the incoming fragments have 0.5 value,
so ”less than” test is true only for the fragments (or projections) for which
non-zero FP value is expected.

SIMDization of fragment program : Each fragment processing in our im-
plementation, results in the computation of the FP value for one projection
point (or ray). However, wherever evident we have exploited the SIMD
capabilities of the GPUs to process one fragment.

4.2.2 Backward projection

• Basic Approach The main challenge in backward projection is to evaluate
the numerator and denominator of the OSC backward projection equation as
mentioned in []. Once the numerator and denominator are computed voxels
can be updated by simply carrying out the division and using the value. The
backward projection equation is symmetrically applied to all the voxels, so
in order to explain the approach it is sufficient to discuss how the numerator



and denominator are evaluated for a single voxel. Since the forward pro-
jection values for all the projections are computed before carrying out the
backward projection, its correct to update the voxels individually.

The evaluation of numerator and denominator of OSC backward projection
equation ([1]) for a voxel requires the set of projection points or rays which
effect this voxel. Apart from set of projections, we also need the intercept of
those projections inside the voxel. Once such a set of projections along with
its intercept is identified, the numerator and denominator can be evaluated.
We identify such projections set for the voxel by drawing (one ray for each
source-detector pair or projection angle) rays from the source through the
center of the voxel under consideration. If the ray hit the exact grid point in
the projection space, we take that projection in the set. If it doesn’t hit an
exact grid point, we use the interpolation (either bilinear or nearest neigh-
bors) on the projection space. This kind of ray tracing operation gives us
the set of projection points which are used to evaluate the numerator and
denominator. The length of the rays inside the voxel are computed by using
an optimized approach exploiting the fact that rays are passing through the
center of the voxel. The Figure 4 explains our approach for length compu-
tation.

Algorithm 4.3 shows the pseudo code in the algorithmic terms along with
the comments on the hardware resources utilized.

Algorithm 4.3 OSC Reconstruction : Backward Projection

OSCBP ( currVol, fpProj, expProj, subset )
begin

PackData ( fpProj, expProj, subset ) ;
Transfer all projections ∈ subset to GPU ;
For ∀ zSlice ∈ currVol

Set depth buffer ;
Enable depth test ;
For ∀ projection ∈ subset

Set input values to shaders ;
Render quadrilateral (Invoke computation for Numerator and denominator) ;

End For
Render quadrilateral (Invoke computation for division) ;
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Readback BP results for zSlice ;
End For

end

• Optimizations Several optimizations have been incorporated to use features
available on GPU. This subsection discuss the details of the optimizations
incorporated.

Texture access optimizations by data packing : This optimization is a bit
different from the data duplication optimization done in the context of FP.
In this case since we need both FP value and the experimental value for all
projections in a symmetric way, we pack them together so that a single ac-
cess to the texture get us both FP and experimental values for the projection
point. However, maximum number of texture access required can be four to
carry out the bilinear interpolation.



Data transfer optimizations : The back projection is done slice by slice in
the volume space using one subset of the projection. The entire subset of
the projection is transfered once and than it is used to back project all the
voxel slices.

Zero voxel initialization and Z-culling : This is an important optimization
for BP. First of all, we initialize some of the voxels in the reconstructed
volume to zero as shown in Figure 5. It essentially captures the fact that
if any of the projection ray passing through a voxel has zero experimental
value, than that voxel will have zero value in the final reconstructed volume.
So, such voxels can be initialized to zero once and may not be considered
in the reconstruction iterations. This selectively zero initialization of voxels
is achieved by separate rendering passes on the GPU and done only once.
All other voxels (which are not initialized to zero) will have non-zero initial
value. We observe that voxels with zero value don’t change their value
throughout the OSC iterations and hence can be ignored from processing
in a way similar to ignoring the zero value projection points in FP. This
optimization is implemented using the same depth test technique (as used
in FP) with non-zero voxels used to set the depth buffer.

Distributing computation across different stages of OpenGL pipeline : In
our implementation we have distributed the BP computation across differ-
ent stages of the pipeline. There are three main computation parts involved
in the BP. Firstly, computing the projection space co-ordinate for a voxel.
Secondly, using the projection values to evaluate the numerator and denom-
inator of the OSC equation. Lastly, performing the division and updating
the voxels.

The first part is equivalent to aligning the co-ordinate axes which are paral-
lel to the volume faces to the co-ordinate axes which are parallel to detector
sides, and than perspectively projecting the voxel onto the detector space.
The vertex processor and the rasterizer is well suited to carry out this oper-
ation and we use them in our implementation. The second and third parts of
the computation are carried out on the fragment processor of the OpenGL
pipeline.

SIMDization of shaders : Each voxel is processed as a fragment in the frag-
ment processor. Wherever evident, we utilized the RGBA SIMD capabili-
ties of the GPU to process a fragment.
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Algorithmic optimization for length inside the voxel computation : Length
of intercept with the voxel for the projection ray inside the voxel is needed
in the OSC equation. This can be computed by finding the intersection co-
ordinate of a line with the voxel using co-ordinate geometry. However, this
is computationally costly. We observe that since the rays are drawn from the
source through the centre of the voxel, the entry and the exit point must lie
on the parallel faces of the voxel. Further, since voxels are of unit dimension
the maximum change in any co-ordinate between the entry and the exit point
can be and will be unit. So, it follows that the faces of the voxel which are
parallel to the axis along which the gradient of the ray is maximum will
form the entry and exit faces. Once we have the entry and exit faces for
a ray inside the voxel it is simple to find the intersection co-ordinates and
subsequently the length.



5 Results and Discussions
The implementation for both Feldkamp and OSC algorithm were tested and bench-
marked on Shepp-Logan phantom [8]. The GPU used for experimentation was
Nvidia Quadro FX4600 [9]. The base line numbers were obtained by a single
threaded run of the algorithms on Intel T2600 [10]. The size of reconstructed
volume was 128 x 128 x 128, while the projection size was 128 x 128. We used
180 projections for running Feldkamp algorithm while 90 of them for OSC algo-
rithm. We obtain 60 and 100 times speed-up for Feldkamp and OSC algorithms
respectively on the chosen GPU using our implementation compared to the chosen
baseline. It it to be mentioned here that the GPU used in the experimentation is not
the most advanced GPUs available in the market. So, performance numbers are
likely to improve on more powerful GPUs or by incorporating further algorithmic
or architecture specific optimizations. Hence, in this report we have discussed our
experience of implementing two of the important medical imaging algorithms on
GPU.
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