
H-0140 October 10, 2002
Computer Science

IBM Research Report

FPgen - A Deep-Knowledge Test-Generator for
Floating Point Verification

Laurent Fournier, Sigal Asaf
IBM Research Division

Haifa Research Laboratory
Haifa 31905, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Abstract
This paper describes FPgen, a test-program generator for

datapath verification of floating-point units in microproces-
sors. FPgen is a convenient and powerful platform for gener-
ating interesting data combinations for floating-point
instruction operands. Its main purpose is to provide a means
to fulfill floating-point test-plans which typically include a
myriad of tasks that stem from both the architecture and the
micro-architecture. FPgen focuses on the IEEE standard defi-
nitions and therefore supports architectures that comply with
these definitions.

1. Introduction
Traditionally, achieving IEEE compliance for floating-point

hardware in microprocessors has been a challenging task.
Many escape bugs, including the infamous Pentium bug [16],
belong to the floating-point unit and reveal that the verification
process in this area is still far from optimal. The growing de-
mand for performance, quality, and faster time-to-market
causes the verification work to become increasingly difficult.
Problems in the floating-point unit implementation have many
sources. These problems range from data operations on indi-
vidual instructions, to the correct handling of sequences of in-
structions in which back-to-back events challenge superscalar
implementations. The complexity stems both from the richness
of the specification (architecture) and from the peculiarities of
the implementation (micro-architecture).

Verification has traditionally been handled by simulation of
test-programs [3,5]. Recently, the area of formal methods has
evolved significantly, especially for the floating-point data-
path [9,10,11,13]; however, it is nevertheless far from
providing a comprehensive answer to the problem.

In most environments, the simulation of test cases is still a
cornerstone of the verification process. This paper presents
FPgen, a new test generator developed in IBM, targeted to-
ward the functional verification of the datapath of floating
point units in microprocessors. FPgen is designed to yield a
quasi-optimal framework for the generation of test cases in this
area.

When dealing with floating point verification by simulation,
there are an enormous, practically unbounded number of dif-
ferent calculation cases which need to be tested. In practice,
simulation can be done on only a very small portion of the ex-
isting space. The rationale behind verification by simulation is
that one acquires confidence in the design correctness by run-
ning a set of test cases that exercise a sufficiently large number
of different cases, which in some sense are assumed to be a
representative sample of the entire space. It is inferred that the
correct handling of the tested cases is a testimony to the design

correctness of all the cases. The difficult question is: “How
should such a representative set of test cases be built?” Since
both the architecture specification and the micro-architecture
implementation yield a myriad of special cases, pure (uniform)
random generation of test cases would be largely inefficient.
As described below, FPgen offers full control to bias test gen-
eration so it reflects the underlying distribution of interesting
cases.

How does one know that a certain set of tests is sufficient?
This question is related to the notion of coverage, which de-
fines the comprehensiveness of the set related to the verifica-
tion target [6,7,8]. Usually, coverage models, which are sets of
related tasks, are defined and the set of tests should fulfill all
the defined tasks. For example, a common - albeit far from
trivial to fulfill - coverage model is one that requires enume-
ration of all major IEEE floating point types, simultaneously,
for all operands of all floating-point instructions (the “All
IEEE Types” model). For a given instruction with three oper-
ands, this potentially yields a thousand (10**3) cases that must
be covered, assuming 10 major floating-point types (+/- NaNs,
+/- Infinity, +/- Zero, +/- Denorm, +/- Norm). Table 1 illus-
trates this model, with a few common floating point instruc-
tions. This model can be further refined by including
additional floating-point types, such as minimum and maxi-
mum Denorm, etc. Obviously, not all cases are possible (e.g.,
the addition of two positive denorm numbers cannot reach in-
finity), so that the actual number of cases is in fact lower than
the size of the full Cartesian product.

etc.
Fsqrt
Fdiv
Fmul
Fsub

+/- NaN
+/- Infinity
+/-0
+/-Denorm
+/-Norm

+/- NaN
+/- Infinity
+/-0
+/-Denorm
+/-Norm

+/- NaN
+/- Infinity
+/-0
+/-Denorm
+/-Norm

Fadd
OutputOp2Op1Instruction

Table 1: The “All IEEE Types” Coverage Model

A coverage model, or the set of all coverage models, is of-
ten an attempt to partition the set of all the calculation cases in
such a way that the probability distribution is uniform over all
subsets. As explained below, FPgen provides coverage by gen-
eration, i.e., it takes the request of a coverage model (such as
the one in Table 1) as input, and outputs a set of tests that
cover all the achievable tasks of the model.

The verification process is commonly defined and moni-
tored through a verification plan, which leads to multiple veri-
fication tasks. FPgen’s main purpose is to provide a
convenient platform for performing all these tasks, both quali-
tatively and quantitatively. On the one hand, it should enable
the most complex verification requirements, involving intricate

FPgen – A Deep-Knowledge Test-Generator for Floating Point Verification

Laurent Fournier and Sigal Asaf
IBM Research Laboratory in Haifa

laurent@il.ibm.com, sigalas@il.ibm.com

1

sets of constraints, to be fulfilled. On the other hand, it should
enable the generation of a practically unlimited number of dif-
ferent cases for each given set of constraints. FPgen provides
these two properties in a context of randomness. This is mean-
ingful since bug locations are mostly unpredictable. Thus,
FPgen provides a comprehensive, quasi-optimal simulation-
based solution for datapath verification of floating point imple-
mentations. While its scope is not limited to a certain
architecture or design, its first target is the IEEE Standard for
Binary Floating Point Arithmetic [1], and architectures that
comply with this standard.

FPgen provides a convenient platform for biasing and gen-
erating operand data for floating point instructions. Simply
put, a bias (or constraint) on an operand data, is a set of values
to which the operand data is constrained. Resolving biases on
input operands is usually relatively straightforward, even
though uniformity among all the solutions is sometimes ex-
tremely hard to obtain. In contrast, resolving constraints on the
data, for both the intermediate result(s) and the output of in-
structions, adds a layer of complexity since it involves instruc-
tion semantics. FPgen’s scope, however, goes beyond the sin-
gle instruction domain, and includes the generation of se-
quences of instructions possibly driven by the definition of
coverage models.

FPgen belongs to a family of Deep-Knowledge Test Gen-
erators. These generators, developed in IBM, focus on specific
areas not sufficiently stimulated by other means. This family
includes test generators for micro-architecture flow and for
Memory Management (Address Translation) Unit verification.

1.1. Outline
This paper is organized as follows: Section 2 surveys the

current state-of-the-art and Section 3 provides a high-level de-
scription of the tool. Section 4 describes the solving engines,
Section 5 introduces a series of additional features, and Sec-
tion 6 discusses the concept of coverage by generation. Section
7 concludes the paper.

2. Motivation
Traditionally, floating-point verification has been under-

taken through simulation of test programs. Recently, formal
verification is being applied to this domain. While these two
complementary, yet competing technologies are applied to
various extents in the industry, floating-point verification is
still achieved primarily by running test programs. Mainstream
test generation tools [3,5] do provide some means for verifying
floating-point implementations. However, their lack of focus
and internal knowledge related to the floating-point domain,
render them inadequate for providing a practical, let alone-
complete, solution to the floating-point verification problem.

Even existing test generators that focus on floating points
[17,24] are of limited power, especially for the control of out-
put operands. The common drawback of existing test genera-
tors is that new procedures must be written each time an
additional event is deemed important and needs to be gener-
ated with reasonable probability. Typically, such procedures
are difficult to write, and require an in-depth knowledge of the
floating-point domain.

Other sources of tests widely used in the industry are the
IEEE test suites. These test suites are an important quality
threshold, and assist in reaching confidence in the design cor-
rectness. The tests provide good coverage of IEEE corner
cases. However, the bug-free running of these suites is neces-
sary, but far from sufficient, since their scope is confined to
the IEEE standard and the implementation itself, with its host
of specific cases, is not targeted.

The second technology, Formal Verification (FV), has
evolved significantly during the last five to ten years. While
FV has traditionally been more focused on the verification of
control paths, it has lately started to target floating-point data-
path verification as well. Verification of control paths [20]
[21], is improving, but still collides with the BDD size explo-
sion problem relatively fast as the control block size increases.
Two new approaches, both relying on theorem proving [18]
technology, have emerged for datapaths. The first approach
translates the data-path circuit into the Theorem Prover’s lan-
guage. The proof of the circuit’s correctness is done entirely
with the Theorem Prover, by proving a succession of manually
proposed and deducted lemmas (e.g., the work in [9,10] with
ACL2). Because of the circuit’s complexity and the Theorem
Prover’s limitations, parts of the proof are performed manually
[9,10]. The second approach combines traditional FV tools
with the Theorem Prover. The circuit is split into blocks and
each block is verified by traditional FV tools. The Theorem
Prover then combines the blocks into one unit [11]. Both ap-
proaches require a significant amount of manual work by ex-
perts in mathematics, floating-point, formal methods, and FP
micro-architecture. While FV solutions are very attractive,
they still suffer from three significant drawbacks:
! Expensive in terms of time, especially expert time.
! Involve many manual steps. This explains the presence of
bugs even after these proofs are performed [11].
! Not applicable to all FP instructions or for verifying a se-
quence of FP instructions.

Therefore, at the very least, simulation must still be per-
formed in parallel to any FV effort.

Due to the incompleteness of existing technologies, addi-
tional ad-hoc tools and scripts are often sporadically used to
cover the verification scope. Clearly, the situation is far from
optimal. In parallel, the complexity of floating-point units con-
tinues to increase at a rapid pace, to meet demands for in-
creased performance and aggressive targets on FP
benchmarks. Given this state of affairs, it is not surprising that
the floating point area remains a significant source of escape
bugs in microprocessor designs.

3. FPgen High Level Description
This section provides a general overview of FPgen’s func-

tionality. FPgen is a random test generator which receives a re-
quest for a certain floating-point task, or tasks, as input, and
outputs a test, or a suite of tests, that fulfills the request. The
test format consists of three sections: (1) initial state of re-
sources, (2) sequence of instructions, (3) expected results of
resources. Expected results are computed via a behavioral
simulator [3].

2

3.1. Coverage Model

A coverage model is a set of related verification tasks, such
as the All Types model from Table 1. For the sake of compre-
hensiveness and efficiency, test plans usually require that full
coverage models be fulfilled, rather than fulfilling a list of

dispersed tasks. These models attempt to partition the test veri-
fication space in such a way that each partition receives a more
or less equal focus. FPgen allows the user to directly request
the fulfillment of coverage models.

A coverage model is defined by specifying a set of different
constraints to be fulfilled, where each constraint corresponds
to a particular task targeted by the coverage model. More

Further pinpoints the targeted areas, thereby providing the lan-
guage with unlimited power

op1 is norm
and Exp(op1)
is Exp(op2)+5

Union, intersection,
and complement of ba-
sic set types

Set
operations

For addition instructions: relate between exponents of input
operands (when exponents are too far apart—which accounts for
the vast majority of cases—the addition reduces to a trivial case).
It is also important to relate between input and output

Exp(op1) -
Exp(op2) <= 2

Usage of symbol to re-
late between operands

Symbol-
reference

Similar to previous entry, but focuses on continuous sequences.
For example, a number with a very long sequence of 1’s [16]

A stream of at
least 45 1’s in
the mantissa

Specify the length of a
continuous stream of 1’s
or 0’s. Min and max are
given

Sequence
of
ones/zeros

Numbers that exhibit extraordinary sequences of 1’s and 0’s are
often handled in a specific way (to gain performance) by the
micro-architecture

At least 1 bit
set in bits 5-8

Specify the number of
bits equal to 1 or 0. Min
and max are given

Number of
ones/zeros

- Target Hamilton neighborhood of critical FP numbers
- Check correct rounding: only some LSBs of the intermediate re-
sults are relevant, while the others can be random (i.e., don’t
cares)

+-Zero =
X000...000
-Zero =
1000...000

A number where some
bits are don’t cares (X),
while the others are
regular 0’s and 1’s

Mask

-Definition of all the FP basic types (such as denorm)
- Target neighborhood of critical FP values

[min-denorm,
max-denorm]

A range of numbersRange
MotivationExampleDefinitionSet Name

Table 2: Supported Set Constraints

Although the overall scope of FPgen includes, among other
things, instruction sequences and coverage models, its primary
focus is the solving of data constraints on operands of individ-
ual floating-point instructions. An individual data constraint on
a floating-point instruction operand is defined as a set of val-
ues that can be selected for this operand. It must be a subset
(not necessarily proper) of the set of all possible values. Re-
stricting the set of values of an input operand to the denormal
numbers is an example of a data constraint on the operand. An
individual instruction can have as many data constraints as it
has operands. When constraints are requested on all operands
(inputs and output) of an instruction, we say there is a full con-
straint on the instruction. Solving all the instruction con-
straints is reduced to selecting a value from each given set in
such a way that the instruction semantic is respected. This
should be done with randomly uniform probability, where each
solution should have the same probability of being selected.

FPgen’s main challenge is to provide solving engines that
can solve these constraints, even the more intricate ones,
within a reasonable amount of time. Since it is clear that many
of the full constraints yield NP-Complete problems, it cannot
be expected that all such problems will be solved in polyno-
mial time. However, FPgen's heuristics will attempt to ensure
that only a small fraction of the problems require long time
periods to be resolved. For more on the algorithms and differ-
ent approaches used, see Section 4 - Solving the Constraints.

The rest of the functionality is a relatively straightforward
extension to this basic power. Hence, we first present data con-
straints for individual instruction operand, and then introduce
the extensions that complement the full description of the
tool's scope.

The general outlook of a single instruction constraint is of
the form:

FPinst (Op1 in Set1) (Op2 in Set2) (IntRes in Set3)
(Output in Set4)

where FPinst is a floating-point instruction with two input
operands (Op1 and Op2), one intermediate result (IntRes), and
one output. Input and output operands are defined by the archi-
tecture, while the intermediate result is a construct that be-
longs to the implementation domain (see Section 5 Additional
Properties). The case of two operands and a single intermedi-
ate result is used here for simplicity of notation, but generali-
zation to any number of such parameters is straightforward.

FPgen provides multiple means to define sets of floating-
point numbers and sets of floating point fields (sign, exponent,
and fraction). The different types of sets, shown in Table 2,
serve to conveniently translate constraints that emanate from
typical tasks of the verification plan. They therefore constitute
a critical component of the tool.

3

precisely, a single instruction coverage model will have the
following form (again, for an instruction with two inputs):

FPinst (Op1 in Pattern1) (Op2 in Pattern2) (IntRes in
Pattern3) (Res in Pattern4)

A Pattern is a construct that represents a logical OR among
sets of floating-point numbers. Patterns have the following
general form:

Pattern = Set1 OR Set2 OR...OR SetN...
where each Set is a set of floating-point numbers, as defined

above. Each task of the coverage model corresponds to a spe-
cific selection of a Set for each Pattern. The number of differ-
ent tasks in such a model is the multiplication of the number of
Sets for each participating Pattern (Cartesian product).

3.2. Sequences

Although constraints are defined for single instructions, the
input language allows a sequence of instructions to be speci-
fied as an individual coverage task. In general, this is a
straightforward extension to the single instruction scope.
However, for relatively long sequences, specific care should
be taken that constraints are fulfilled, since all resources (i.e.,
FP registers) tend to be used [25].

Coverage models can also be defined for a sequence of in-
structions. Covering such models is reduced to covering the
Cartesian product of the tasks engendered by each single in-
struction coverage model.

The importance of sequences stems from the complexity of
the underlying, typically pipelined, micro-architecture. FPgen
allows to combine interesting data-related events with error-
prone micro-architecture scenarios, such as back-to-back ex-
ception situations. The area of floating-point sequence verifi-
cation is not within the scope of FV, or at most weakly tackled,
rendering the corresponding FPgen functionality critical even
to FV-based verification processes.

4. Solving the Constraints
This section provides an overview of the major FPgen mod-

ule which is responsible for solving the constraints. While a
detailed description of the underlying algorithms is beyond the
scope of this paper (see [15]), we present the overall solving
scheme and give some insight into the inherent complexity of
the individual algorithms.

It should be clear that resolving constraints over the floating
point numbers involves a different type of mathematics than
the standard one over the Real numbers [27]. Table 3 below il-
lustrates this observation with a simple example, assuming
floating point numbers with a 4-bit fraction.

[1.0000*22,
1.0000*25]

[1.0001*210,
1.0010*210]

[1.0001*210,
1.0010*210]

subtract
OutputOp2Op1Instruction

Table 3: A Constraint with no Solution over the FP
Numbers

Over the floating point domain, the input ranges include
only two numbers, yielding three possible outputs of the sub-
tract operation: 0, 1.0000*26 , and -1.0000*26. There are
clearly solutions over the Reals (where the ranges shown

include an infinity of numbers), but no solutions over the float-
ing points.

FPgen solves constraints that emanate from set restrictions
on instruction operands. Given a restriction, FPgen is tuned to
search for a random instance that will solve it and is uniformly
distributed among the set of all solutions. For some complex
cases, the uniformity target is dropped and, at the very least,
FPgen ensures that each solution has a reasonable probability
of being selected. (See Section 5.1 - Instance Selection.)

As described above, constraints can be given on input oper-
ands, output operands, or on both types simultaneously.
Clearly, solving constraints on output operands, as opposed to
input operands, leads to a significant leap in the complexity of
the problem, as it involves the semantic of the instructions.
Constraint restrictions can become intractable when simultane-
ous constraints are requested on both input and output oper-
ands. For example, it is unclear how a random solution can be
found for the task appearing in Table 4. It was taken from a
coverage-model defined in a test-plan of an IBM microproces-
sor: The instruction is fp-multiply-add (output =
round(op1*op2+op3)) and the format is double-precision.

1.Exp(Product)-E
xp(Op3)=0
2.Exp(Op3)-
Exp(output)=52

denormHas between
1 to 10 zeros

Has between
1 to 10 ones

Exponent
relations

Op3Op2.fractionOp1.fraction

Table 4: An FPgen Example

Many similar cases can be shown to be NP-Complete.
Multiple engines were used to implement the solving phase

(Figure 1). After first analyzing the constraint type, FPgen di-
rects the task to the appropriate engine or group of engines.
Two major types of engines are used:
1. A-engine – engines that are guaranteed to find a solution of
the constraint within a reasonable time, if it exists. Therefore,
their output is either a random solving instance, or a message
that no solution exists. These analytic engines are based on
mathematical algorithms for tractable, albeit often complex,
problems.
2. S-engine – engines used on constraints for which no A-
engine is known. S-engines are dedicated to full constraints
since they are the only ones for which A-engines are not al-
ways available. Typically, S-engines have heuristic search so-
lutions, but their success within a reasonable amount of time,
is not guaranteed. Therefore, their output can also include a
“quit” message, indicating that no solution has been found, al-
though one may exist.

Depending on the instruction and the type of constraints,
FPgen will opt for either A-engines or S-engines. Table 5 de-
scribes the existing engines (the development of additional en-
gines is underway). When the A-engine path is selected, a
specific A-engine is chosen to either resolve the problem or in-
form that no solution exists. The scheme differs slightly when

4

A-engines

inputs output 2 out 3 ranges masks

result: - found a solution
- no solution exists

S-engines

result: - found a solution

- unknown

- proof that no solution exists

dec red SAT HCldec red SAT HCldec red SAT HCl

dec=decomposition
red=reduction
HCl=Hill Climbing

Analyzer

A-engines S-engines

instruction's constraints

Figure 1: FPgen Engines Scheme

The full constraint is decomposed into two constraints: inputs-only and output-
only (or output and single input if relevant). Each one is solved separately with a

All“S”
Generic

Decompositi
on

Algorithm to be published [15].add/sub
type only

“A”
Specific

Full Masks

An important family of constraints. For example, the All Types model presented
above belongs to this family. Much less straightforward to solve than anticipated.
Algorithms will be published in a separate paper.

All“A”
Specific

Full ranges

Engines for solving constraints that include an output constraint and a single input
constraint on instructions with two inputs. The remaining input is free

All (2
inputs)

“A”
Specific

2 out of 3
Input, Output

In many cases, a separate engine is provided for output constraint and for interme-
diate result constraint

All“A”
Specific

Output only

Uniformity of the solution is usually achieved, except for complex constraints in-
volving set operations

All“A”
Generic

Inputs only

RemarksType of
instruction

Engine
Type

Constraint
Type

the S-engine path is taken. First, a time limit must be fixed.
Second, the problem will not be transferred to a unique engine,
but to all the appropriate S-engines, in parallel. The first en-
gine to hit a solution or prove that no solution exists, will ter-
minate the process. Currently, each S-engine works
independently, but in the future, we envision a “cooperative”
mode where information is transferred between S-engines to
speed up the process, increasing the odds of success.

4.1. A-engines and S-engines: a High-Level View
In this section, we provide some insight into the individual

solving engines and describe the engine partition over the ex-
isting problems. Table 5 summarizes the situation. In short, A-
engines handle constraints on input or output only, and a few
special cases of full constraints. All other types of full con-
straints are directed towards S-engines. Some engines are ge-
neric in the sense that they can be applied to any problem,
while others are valid only for a specific instruction, or even
for only a specific type of constraint on a given instruction.

For example, input constraints are resolved by a single A-
engine, while a different A-engine is used for each output-only
constraint. The S-engines are of a more generic nature, but in-
dividual heuristics can be added for each instruction
separately. For instance, a hill-climbing search for full con-
straints (see description in Table 5) on an add instruction
should know that there are two major types of addition; one in-
volves numbers of comparable dimension and the other does
not. Thus, in the latter case, the output is equal to the largest
term, except perhaps for the LSBs due to rounding.

Most of the A-engines are based on mathematical algo-
rithms. For example, the engine for constraints that works only
on the intermediate-result of the fp-multiply instruction is
based on factorization. The algorithm for mask constraints on
all operands for the fp-add instruction is based on mathemati-
cal features of the add instruction and the mask set [15].

5

5. Additional Properties
This section introduces additional FPgen features.

5.1. Instance Selection
When FPgen selects an element in a Set, the idea is to give

each element the same probability (i.e., select with a uniformly
random distribution). We opt for natural distribution since
there is no reason to prefer one solution over another. How-
ever, it is recognized that in some cases, the price to reach this
goal may be high in terms of time complexity. Therefore, this
requirement is often relaxed; it is sufficient to have a relatively
equal probability for each element. The minimal requirement

is that each element has at least a reasonable probability of oc-
curring. This is usually simple for individual constraints on in-
put operands, (although it can become deceitfully complex for
intricate sets of values), becomes more difficult when the data
constraint is on the output operand, and yields largely untracta-
ble problems for most full constraints.

5.2. Intermediate Result Framework
The IEEE 754 standard requires that each operation be per-

formed in an intermediate result as if it had infinite precision
and unbounded range. This intermediate result should then be
corrected to fit into the destination’s format. In practice, imple-
mentations define an internal floating-point number with a
wider exponent and a wider fraction, which enables the calcu-
lation of outputs as though the intermediate format was
unbounded.

FPgen relates to such an intermediate result as one of the
instruction operands. The field’s sizes (exponent and mantissa)
are parameters that can be controlled by the user. This way, all
the defined constraints can be applied to the intermediate re-
sult as well. Consider for example, a constraint on the interme-
diate result, where the constraint asks for an inexact result or a
result with the maximum intermediate exponent. Analytic algo-
rithms have been described to solve this type of constraint for
some specific patterns and instructions [17].

Standing apart from other instructions, the fp-multiply-add
instruction has two intermediate results. One intermediate re-
sult represents the result of (op1*op2) and the other
(op1*op2+op3).

5.3. Knowledge Library
FPgen provides a means to accumulate and encapsulate

knowledge previously acquired.
1. Data Type. Data types enable to weight different con-

straints on a single operand. For example, one can ask for an
operand to be 30% denormal and 70% zero. It is also a con-
venient way to define a regular constraint (like denormal), for
reuse by name (as a macro).

2. Event. An Event gathers several individual instruction
constraints and allows them to be weighted separately. This
yields a means to describe the different ways a certain Event
may happen, by referring to all of them using a single name,
and weighting them appropriately. For example, the Event
Add_Overflow could be defined as appearing in Table 6.

exp>max-expdenormmax norm20%
exp>max-expnormmax norm30%
exp>max-exphugehuge50%

Intermediate SetOp2’s SetOp1’s SetWeight

Table 6: Event Add_Overflow

In the above table, exp is exponent, huge is a set of high
floating-point numbers (range), and max-exp is the maximal
exponent value. Given such definitions, one can request (as-
suming ADD_Underflow is defined in an analogous manner):

Add_Overflow OR Add_Underflow
Of course, to get an overflow event, the following request is

sufficient:

Exponent > max-expfp-add
Set for intermediate-resultInstruction

Table 7: Overflow Constraint

However, every solving instance will be then given the
same probability, while the Add_Overflow Event can induce a
more adequate partitioning distribution, verification-wise.

This engine uses a space-search similar to Hill-Climbing or simultaneous anneal-
ing [26]. A random FP number is chosen for each of the operands. During each it-
eration, one bit is flipped. The flipped bit is chosen according to an
instruction-dependent heuristic function.

“S”
Generic a

Hill
Climbing

The problem is translated to a CNF formula where each of the bits of the FP num-
bers represents one Boolean variable. A solution to the CNF formula is found
through a SAT solver (e.g., GRASP [22,23] , modified in order to get a random
solution).

All“S”
Generic a

SAT

The full constraint is reduced to one being solved by an A-engine, (e.g., full-
ranges). Since the reduction may remove or add solutions, this is done repeatedly
until a valid solution is found or the time limit is exhausted.

All“S”
Generic

Reduction

corresponding A-engine, until the solution matches the additional constraint or the
time limit is exhausted.

In the above table, A stands for A-Engine, S for S-Engine, and a to indicate that the engine is of generic nature, but individual
heuristics/translations are added for each instruction separately.

Table 5: FPgen Engines

6

The capability of enumeration for each case of the Event is
also given. When enumerated, an Event defines several con-
straints that must be fulfilled for the coverage model. In this
case, the weights are redundant.

3. Library. FPgen provides a repository for preserving cov-
erage models, data-types, and events. This way, the accumu-
lated knowledge is captured for future use and reference.

5.4. Coverage Model Restrictions
For some coverage models, as in the All IEEE Types case,

there are individual tasks that are not feasible (i.e., there is no
possible solution). Although FPgen is able to discover these
cases on its own and will issue appropriate messages, it is good
practice performance-wise, to inform FPgen about these re-
strictions. FPgen makes it possible to include this optional re-
striction information when defining a model.

5.5. Exhaustive Enumeration
An additional way of defining a coverage model involves

requesting all the elements of a given set. For example, one
can ask to have the fp-add instruction with all the possible dif-
ferent values of exponent on the output. Obviously, the size of
the set should be manageable.

5.6. Time Complexity
Most of the constraints are solved in a relatively short

amount of time. Some extremely complex constraints, where
the number of solutions is small, may require a very time-
consuming solving process. FPgen users may control the maxi-
mal time allowed for searching for solutions. For example, a
few tasks may remain uncovered for a desired coverage model,
and it is not even clear whether they are feasible. Similarly, to
optimize its design, a designer may want to know whether cer-
tain combinations of data are possible on inputs and output.
Clearly, these types of usage should allow longer time periods
for FPgen's solving mechanism. Upon failing to find a
solution, FPgen indicates whether there are no solutions or the
allocated time period was insufficient to find a potential
solution.

5.7. Integer Constraints
The IEEE standard demands support for conversion be-

tween floating-point and integer types. FPgen supplies the set
constraints Range and Mask for integer biasing.

5.8. Coverage Density
Within a coverage model, the number of instances required

for each task can be controlled using the coverage density pa-
rameter. This enables FPgen to generate many different in-
stances that fulfill the same underlying purpose. This is impor-
tant since a task usually reflects a suspected area, and hitting
this area on multiple points yields a significant added-value.

6. Coverage by Generation
FPgen implements the concept of coverage by generation.

This means the input of FPgen is a coverage model request,
and the generation process is focused on fulfilling each of its
tasks, one at a time. This is different from coverage by feed-
back [19], where generation is partially random and coverage

analysis of the generated tests is fed back into the generation
process to bias it towards uncovered tasks. The coverage by
generation approach has several advantages:
! No expensive expert time is spent on coverage analysis and
on re-tuning the generation
! Tasks are covered in a homogeneous manner (i.e., each task
is hit the same number of times)
! Faster generation of the covering set of tests
! Impossible tasks can be reported by the tool. No expert
time is spent analyzing such tasks

Figure 2 illustrates the typical coverage progress of the two
approaches.

Time
0

20

40

60

80

100

C
ov

er
ag

e
P
er
ce

nt
ag

e

by feedback

by
generation

Figure 2: Coverage by Generation vs. Coverage by
Feedback

The straight line of the coverage by generation approach is
expected, as each task is directly targeted and covered. The
wave-like form of the coverage by feedback approach stems
from its inherent lack of precise knowledge and its iterative
feedback. More specifically, each wave represents the covered
targets until additional feedback is provided to the generation
process, time at which an additional wave, typically of smaller
amplitude, starts. The flattening of each wave reflects the need
for additional knowledge. The coverage percentages of the
successive waves vary with the complexity of the tasks present
in the coverage model. Those given here are only for purpose
of illustration.

7. Conclusion
We developed FPgen, a Deep-Knowledge Test-Generator

for floating-point datapath verification, whose purpose is to
give a quasi-optimal test generation framework for the simula-
tion domain. FPgen is already being used to verify several
IBM processors, and has already assisted in uncovering many
interesting bugs. The analysis of these bugs serves as a basis
for further development in FPgen. In addition, FPgen easily
covers tasks that were previously very hard to hit. Moreover,
for each of the covered tasks, a practically unbounded number
of cases can be generated.

While FPgen is a generic tool that supports IEEE architec-
tures, adaptation for different architectures is possible. For ex-
ample, FPgen already supports multiply-add (a non-IEEE
instruction).

In parallel with FPgen development, we are setting-up a
comprehensive test plan for the IEEE standard. FPgen’s library
will include coverage models to fulfill this test-plan, both

7

qualitatively and quantitatively. Since most architectures com-
ply with the IEEE standard, this will allow most floating point
design verification efforts to focus almost exclusively on
the microarchitecture part of the verification, an area
where FPgen functionality is also highly applicable.

Bibliography
1. IEEE standard for binary floating point arithmetic. An

American National Standard, ANSI/IEEEE Std 754-1985.
2. B. Beizer: “Software Testing Techniques”. Van Nostrand

Reinhold, 1990.
3. Y.Lichtenstein, Y.Malka and A. Aharon, “Model-Based

Test Generation for Processor Design Verification”. Inno-
vative Applications of Artificial Intelligence (IAAI),
AAAI Pres, 1994.

4. L. Fournier, D. Lewin, M. Levinger, E. Roytman and Gil
Shurek: “Constraint Satisfaction for Test Program Genera-
tion”. Int. Phoenix Conference on Computers and Com-
munications, March 1995.

5. A. Aharon et al. “Test Program Generation for Functional
Verification of PowerPC Processors in IBM”. DAC95,
San Francisco, June 1995, pp 279-285.

6. B. Marick: “The Craft of Software Testing, Subsystem
Testing Including Object-Based and Object-Oriented
Testing”. Prentice-Hall, 1995.

7. C. Kaner, “Software negligence and testing coverage”. In
proceedings of STAR 96: the Fifth International Confer-
ence, Software Testing, Analysis and Review, pp 299-327,
June 1996.

8. R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv: “User
defined coverage - a tool supported methodology for de-
sign verification”. DAC98, pp 158-163, June 1998.

9. Edmund M.Clarke, Steven M.German and Xudong Zhao:
“Verifying the SRT Division Algorithm Using Theorem
Proving Techniques”. Formal Methods in System Design,
volume 14, number 1, January 1999, pp 7-77.

10. David M.Russinoff: “A Mechanically Checked Proof of
Correctness of the AMD K5 Floating Point Square Root
Microcode”. Formal Methods in System Design, volume
14, number 1, January 1999, pp 75-125.

11. J. o’Leary, X.Zhao, R.Gerth and C.-J.H Seger: “Formally
verifying IEEE compliance of floating-point hardware”.
Intel Tech. Journal, Vol 1999-Q1, pp1-14.
http://developer.intel.com/technology/itj/q11999/articles/a
rt_5.htm

12. L. Fournier, Y. Arbetman, M. Levinger: “Functional Veri-
fication Methodology for Microprocessors Using the
Genesys Test Program Generator. Application to the x86
Microprocessors Family.” DATE99, Munchen, 1999.

13. Mark D. Aagaard et al.: “Formal Verification of Iterative
Algorithms in Microprocessors”. DAC 2000.

14. Silvia M. Mueller and Wolfgang J.Paul: “Computer Ar-
chitecture, Complexity and Correctness”, Springer-Verlag
Berlin Heidelberg 2000.

15. L. Fournier, A. Ziv: “Solving the Generalized Mask Con-
straint for Test Generation of Binary Floating Point Add
Operation” . To appear in Theoretical Computer Science,
Special Issue: Real Numbers and Computers.

16. Coe, T. “Inside the Pentium Fdiv bug”. Dr. Dobbs Journal
(April 1996), pp.129-135.

17. M.Parks, Number-theoretic Test Generation for Directed
Rounding, Comput. Arithmetic, 1999.

18. K.L. Mcmillan. “Fitting Formal Methods into the Design
Cycle”.

19. G. Nativ, S. Mittermaier, S. Ur, A. Ziv. “Cost Evaluation
of Coverage Directed Test Generation for the IBM Main-
frame”. International Test Conference 2001.

20. I. Beer et al. “RuleBase: Model Checking at IBM”.
CAV97.

21. K. McMillan. “Symbolic Model Checking”. Kluwer Aca-
demic Publishers, 1993.

22. J.P.M Silva and K.A. Sakallah. “GRASP - a new search
algorithm for satisfiability”. Technical Report TR-CSE-
292996, University of Michigan, 1996.

23. J.P.M Silva and K.A. Sakallah. “GRASP: A search algo-
rithm for prepositional satisfiability”. IEEE Transactions
on Computers, 48:506-516, 1999.

24. W. Kahan. “A Test for Correctly Rounded SQRT”, 1996,
//www.cs.berkeley.edu/~wkahan/SQRTest.ps

25. A. Adir, E. Marcus, M. Rimon, A. Voskoboynik. “Im-
proving Test Quality Through Resource Reallocation”.
HLDVT 2001.

26. S. Russel, P. Norving. “Artificial Intelligence: A Modern
Approach”. pp 111-115.

27. Claude Michel, Michel Rueher, Yahia Lebbah. “Solving
Constraint Over Floating-Point Numbers”. CP2001

8

