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Abstract 

This paper presents DSF - a new serverless distributed file system, aimed to 
improve scalability. Scalability is obtained by moving traditional file system 
functionality to lower (disk) levels and by using a dynamic file management 
assignment policy to improve load balancing. 
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1. Introduction 

Disks are slower than processors, and modern networks performance is 
improving at a higher rate than that of disks. Moreover, the fast processors and 
networks impose an increasing average and peak demands on storage and file 
systems.  
 
A typical centralized network file system is based on a dedicated file server that 
satisfies storage access requests, manages file system metadata and maintains a 
cache. These tasks make the file server a performance and reliability bottleneck, 
and the centralized solution does not scale well. 
 
The Data Sharing Facility (DSF) presented here is a scaleable non-centralized 
("serverless") distributed storage access system, where storage, cache and control 
is distributed over cooperating workstations. 
 
Existing systems provide limited answers to the growing storage access demands. 
NFS [1,2] is a remote file access protocol that provides a weak notion of cache 
consistency. Its stateless design requires clients to access servers frequently to 
maintain consistency.  NFS4 [13] introduced client caching and state-based 
protocol. AFS [3] provides local disk caching and consistency guarantees, but it 
does not implement a native file system. It has a global namespace, but a single 
centralized server manages each mountable volume. The VMS Cluster file system 
[4,5] offloads file system processing to a group of individual machines that are 
members of a cluster. Every cluster member runs its own instance of the file 
system code on top of a shared physical disk, with synchronization provided by a 
distributed lock service. The shared physical disk is accessed either through a 
special purpose cluster interconnect to which a disk controller can be directly 
connected, or through an ordinary local area network such as Ethernet and a 
machine acting as a disk server. The Frangipani clustered file system [6] improves 
upon this design by replacing the shared physical disk with a shared scaleable 
virtual disk provided by Petal [7]. Petal consists of a collection of network-
connected servers that cooperatively manages a pool of physical disks. To a 
Frangipani cluster member, this collection appears as a highly available block level 
storage system that provides large abstract containers, which are globally 
accessible by all Frangipani cluster members. IBM's GPFS has similarities with 
Frangipani in its log-based recovery. However, GPFS does not scale well due to 
the use of a centralized lock server. xFS [8] attempts to distribute all aspects of 
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file service over multiple machines across the network to provide high availability, 
performance and scalability. However, xFS management distribution policy is 
static, and its recovery mechanism is complicated (log based). 
 
The DSF presented here is closest to xFS among existing systems.   Functionally 
DSF differs from xFS by providing dynamic distribution of file management. 
It has also different functionality in the components. Through this new 
functionality it achieves a simplified structure, better scaling and simplified 
metadata recovery, all of which potentially improves performance and reliability. 
 

 

2. DSF design principles 

The DSF design is depicted in Figure 1. 
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Figure 1 DSF - System Architecture 
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The System component and functions are: 
 

• DSF Client - runs on some workstation and provides access to DSF 
files and directories.  The DSF Client maintains a memory cache of 
data blocks accessed by applications on the Client workstation. The 
Client accepts file system requests from user programs, sends data to 
Storage Managers on writes, forwards reads to File Managers on 
cache misses, and receives replies from Storage Managers or other 
Clients. It also answers forwarding requests from File Managers by 
sending data to other Clients. 

 
• DSF File Manager - manages the metadata and cache consistency for 

a subset of DSF files. To provide scalable service DSF splits the 
management of its files among several File Managers. The Manager 
of a file controls two sets of information about it, cache consistency 
state and file structure metadata blocks. Together these structures 
allow the File Manager to track all copies of the file's data blocks. The 
File Manager can thus forward Client read requests to other Clients 
thereby implementing cooperative client caching. 

 
• DSF Storage Manager - stores and maintains data and metadata 

blocks on its local disks. The Storage Manager reacts to requests from 
File Managers by supplying data to Clients which have initiated I/O 
operations. DSF Storage Managers contain the intelligence to support 
DSF Logical Volumes. 

 
• DSF Logical Volume - consists of a collection of logical disks that 

span multiple Storage Manager machines and provides abstract 
interface to disk storage with a rich set of recovery properties. The 
logical volume hides the physical distribution of its logical disks so 
that new disks and Storage Managers can be incorporated into the 
system dynamically and without interrupting system operation, 
thereby increasing storage capacity and throughput. The storage 
system may be further reconfigured by moving disks between Storage 
Managers, to match different working environments and workloads.  
Expanding the storage space (volume scalability) can also be done 
without interrupting system operation 
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DSF performance and scalability is achieved by the following design elements: 
 

• Separation of storage from file management. 
• Distribution of storage management over multiple machines 

 
• Dynamic distribution of file and metadata management across 

multiple machines 
Caching and metadata management can be done on a machine 
that is different from the one storing the data. 

• Cooperative caching 
Client machine memories are treated as one global cooperative 
cache. Clients are able to access blocks cached by other clients, 
thereby reducing Storage Managers load and reducing the cost 
of local cache miss. 

• Lack of dedicated machines  
This eliminates source bottlenecks. Any machine in the system, 
including one that runs user applications, can be made 
responsible for storing, caching and managing any piece of 
data or metadata. Furthermore, any machine in the system can 
assume the responsibilities of a failed component.  

• Extensibility - machines can be added to the system 
• Freedom to configure the file system. 

DSF can be configured to match different system environment 
depending on   machine memories and CPU speeds. DSF can 
have multiple configurations ranging from a "small office 
system", where the file system is shared between two machines 
and only one is responsible for storing the data, to a large 
"clustered system" of hundreds machines, where each machine 
is made responsible for storing, caching and managing parts of 
the file system. 

• Use of logical volumes 
DSF logical volume can be used to dynamically reconfigure the 
storage subsystem without interrupting file system operation.  
The support for transactional operations over multiple disks 
improves the performance of file operations that require 
atomic multi-block writes, like file sync and directory 
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operations. The new allocateAndWrite technique removes the 
need to allocate a new block prior to its writing to disk 

 
 

3. DSF mechanisms 

 
3.1. DSF Logical Disk - Introduction  

The Storage Manager maintains each of the plurality of disks physically attached 
to it as a logical disk.  
The idea of a Logical Disk that binds logical block addresses to physical block 
address via a translation table is not new. At MIT [13], HP [14, 15], DEC [6,7], 
Princeton U, and more, prototypes of the logical disk architecture are built since 
the early 1990’s. 
 
With the logical disk approach, the disk storage is partitioned into fixed size block 
spaces, each made of several consecutive sectors. The user application (file system, 
or Data Base, etc.) refers to its data as partitioned to (logical) blocks, each is 
worth of the size of slightly (some 30 bytes) smaller than a block space, and it 
associates logical addresses to its blocks. The Storage Manager maintains a translation 
table that converts each logical block address to physical disk address, which is the 
sector address of the first sector in the block space that accommodates the most 
recently stored contents of the logical block. The Storage Manager also maintains 
an allocation bitmap where it records the availability of the block spaces on the disk. 
Dynamic change of these tables provides for the stable storage feature: only 
after an available block-space is allocated and the new contents of a logical 
block are safely stored into it, is the block-space that accommodated the old 
contents released for use by further block stores, and the translation table is 
updated. 
With such a scheme, a write that fails due to a faulty disk-sector is retried at 
another block space (transparently to the caller of the write operation, which 
only refers to blocks by their logical addresses), and if a failure occurs in the 
midst of block writing, the old contents of the block can be fully recovered. 
Thus, successful write of a block ends with the logical address of that block 
bound to the fresh contents of the block, stored sound on the disk, and a non-
successful write -- to the old contents. A write operation never ends with 
indefinite contents of a block - therefore the attribute stable.  
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Without the translation table, no block can be found on the disk, and without the 
allocation bitmap available block-spaces are hard to find.  To withstand a power 
failure, it does not suffice to keep these data structures in volatile memory; 
periodically, these data structures must be flushed to disk. Furthermore, every 
block write must include sufficient information that can be used, during 
recovery, to redo the updates made to the translation table and the allocation 
bitmap, which we show in the sequel.  
The logical disk scheme we used for DSF simplifies the data structures 
manipulation, improves performance of ordinary and recovery operations, and 
further extends the services provided by the logical disk, to include operations 
traditionally done by the file systems. It also allows more than a single logical 
disk user to use it without having to coordinate operations.  DSF logical disk 
provides also transactional store of multiple blocks, over multiple disks. 
 
Our mechanisms provide the following benefits, most of which we have not 
seen in none of the existing implementations of logical disks: 
 
1. Allow I/O in blocks made from several consecutive sectors (thereby 

allowing atomic multi-sector write). That is, the disk can be managed in 
blocks, larger than its sectors, whose size is determined when the disk is 
formatted as DSF logical disk. 

2. The physical disk, on which the DSF logical disk is implemented, contains 
all the information needed for its management, and thus the disk is easily 
movable from one host to another, without calling for a total re-
configuration. 

3. On each block write, at no extra I/O cost, the update of the translation table 
is stored to disk as well. 

4. On each block write, at no extra I/O cost, the update of the allocation 
bitmap, which records the availability of block spaces, is stored to disk as 
well.  Preallocation of several blocks, and the storage of the updated 
allocation bitmap, is also not needed, as opposed to the usual practice, and 
hence no leak of space occurs when the storage server fails and the 
preallocated blocks are lost. 

5. It provides allocation and deletion of blocks. This allows multiple users of 
our DSF logical disk to allocate blocks without the need to synchronize 
their requests and protect against collisions. Moreover, our allocation and 
deletion schemes withstand cache failures. 

6. It provides soft-write, commit, and abort operations which enable the 
two-phase commit needed for atomic multi-block stores (on single or 
multiple disks). 

7. Consecutive stores of blocks (not necessarily in one chunk) make the disk 
arm move mostly forward; once in a while, the arm is reset all the way 
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backward, and then again it moves forward for many stores. Although the 
stores are not necessarily adjacent on disk, the one directional, rather than 
random, move of the arm gives better performance (as in log structured file 
systems). 

8. Checkpoint of our scheme’s data structures (store to disk of the translation 
table and allocation bitmap and a few integer variables) takes place when the 
arm moves backward, or earlier, at the DSF logical disk’s convenience;  i.e., 
timing for checkpoint is rather flexible. Checkpoints can be done 
succinctly by identifying the components that changed since the last 
checkpoint, and can even be made piecemeal, in small parts, one at a time. 

9. Recovering from cache (power) failure, DSF logical disk reconstructs its in-
memory data structures, bringing them to the very same state they were 
in immediately prior to its failure, faster than any previous work, known 
to us, in this area. The time consumed is linear in the number of write 
operations that took place since the last checkpoint. Besides avoiding 
scanning the whole disk, the read operations needed for the recovery are 
ordered such that the arm only moves forward. 

10. The stable store mechanisms can co-exist with the conventional store in 
place mechanism on one disk: part of the disk is managed through 
translation table and allocation bitmap, and the other part is managed as a 
simple disk.  

11. The implementation of our scheme is rather simple and suits modern 
disk controllers. 

 
3.2. Formatting the disk 

Some of the space of the physical disk is reserved for describing general 
physical and logical parameters, like size of disk sector, number of sectors, 
number and size of block spaces, range of logical addresses supported by the 
disk, etc.. Space is also reserved for checkpoints of the data structures used to 
manage the DSF logical disk. The rest of the space is partitioned to block-spaces. 
An allocation bitmap is constructed for the disk, associating one bit with each 
block-space thus defined. Initially, all the block-spaces are free and accordingly 
all the bits of the allocation bitmap are set to 0.  
 

3.3. Allocation of Block-spaces 

When a block-space is needed for storage, one is allocated from the free block-
spaces on the disk. Our scheme records the physical sector address of the last 
block-space allocated, and looks for a free block-space from that address 
forward. As explained in the sequel, our scheme employs block chaining: the 
blocks are stored with a forward pointer, yielding a forward linked list made 
from all the blocks stored. This allocation, store and link forward process 
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continues until no free block-space is found whose address is higher than the 
last block-space allocated. When this happens, a checkpoint is called, whereby the 
DSF logical disk stores its data structures to disk, and the allocation process 
resumes from the free block-space of lowest address, creating a new forward 
linked list of stored blocks. All along the process of store and link forward, 
between successive block stores, the disk arm moves in one direction: forward. 
The one directional move of the arm gives good performance, as in log-
structured filesystems. 

3.4. Storage Management Data Structures 

In addition to the Translation Table and the Allocation Bitmap, our DSF logical disk 
also maintains the Pass Number: a counter of the number of times that the disk 
arm completed move-forward-and-store passes. This equals the number of 
checkpoints done thus far; the First Available Block-space: a pointer to the first, in 
address order, available block-space when a checkpoint takes place; and the 
Next Available Block-space: a pointer to the available block-space which will be 
stored to the next storage operation.  
 

 
Figure 2 Translation Table and block 
chain operations 
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3.5. DSF Logical Disk Operations 

The Read (address) operation is straightforward. If the address is in the range 
of the metadata addresses, then address is logical, and the translation table is 
consulted, and the contents of the block whose logical address is address is 
returned. If address is in the range of the conventional store, then the contents 
of data block whose physical address is address is returned. 
The Write (address, contents) operation is also straightforward. On the 
conventional part of the disk (where a write overrides old data) this is the 
ordinary store of contents into the space whose physical address is address. In the 
meta-data part, this is a stable store, as described above: first a new block-space 
is allocated, into which contents are stored, and associated with logical address 
address. Then, the translation table is updated, and finally, the block-space that 
used to hold the previous contents of the block whose logical address is address, 
is released. 
 
The non-conventional disk operations are: 
 

Allocate and Write (contents): For regular blocks it means getting a free 
block, allocating it and returning the address to the caller.  For stable-
storage (metadata) blocks it means also finding a logical address, by 
looking in the translation table for an entry that is mapped to NULL, and a 
free block-space, and then continue as with Write, and return also the 
logical address allocated.  

Write (logical address, contents) For stable-storage blocks it means getting 
the next free block in the chain, writing the content and updating the in-
memory translation table. 

Delete Blocks (i1,i2,...): For stable-storage blocks it involves deleting the 
binding of blocks of logical address i1,i2,... with any stored contents, and 
for all making the spaces used to hold their contents available for further 
block stores. For stable store blocks, the DSF logical disk stores a special 
block with deletion information. This block occupies a block-space only 
until the next checkpoint operation, at which time the deletion 
information is stored to disk in the form of the stored updated tables, and 
the block-space that accommodates the deletion information becomes 
available.  For regular blocks it involves only making the blocks available 
for reallocation. 

Softwrite(Transaction-id, logical-address, contents): Allocate a block-
space into which contents of logical block, associated with logical address 
l, are stored, but the old contents still remain on the disk. An extension of 
the translation table makes a note of this ambiguity. Once Abort (Tid) is 
issued, the new contents that pertain to transaction Tid are removed (i.e., 
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the block-space that accommodate them becomes available), along with 
the removal of the ambiguity notification. Once Commit(Tid) is issued, 
the analogous removal of the old contents takes place. 

 
3.6. CheckPoint 

CheckPoint can take place at any time. It is mandatory, though, when no 
available block-space is found beyond Next Available Block-space. In CheckPoint, 
the following items are flushed from volatile memory to a preallocated space on 
disk that is dedicated for the checkpoint: 

1. Translation Table and Allocation Bitmap.  
2. First Available Block-space, which is the first (associated 

with lowest sector address) block-space marked free by 
the Allocation Bitmap at the time of CheckPoint. 

3. Pass Number after increment. 
The store of Translation Table and Allocation Bitmap dominates the amount of 
time consumed by CheckPoint. This store operation can be done efficiently by 
partitioning the data structures to segments of sector size, and each time one of 
these data structures is updated, the relevant segment is marked. Then, on 
CheckPoint, only the updated segments are stored to disk - each to one disk 
sector. This way, if checkpoints are frequent, due to very small number of free 
block-spaces, the updates between successive checkpoints are very few, and  the 
checkpoint process is very short.  When checkpoints occur infrequent 
(abundance of free space) the overhead is negligible compared to the ordinary 
activity. 
 
On CheckPoint, the value of Next Available Block-space is set to be First Available 
Block-space; thereby a new pass of move-forward-and-store takes off. 
Immediately following disk formatting, a first CheckPoint, of all the initial 
values of the data structures, takes place. (This generalizes the recovery 
process). 
If no free block-space is found when CheckPoint takes place, an error message 
is issued.  
 
CheckPoint in time-bounded segments.  When CheckPoint takes place, 
DSF logical disk ceases to provide service, because all its data structures are 
locked until the store to disk is complete.   As this may have a negative effect 
on response time we suggest here a simple scheme for making CheckPoint in 
small, time-bounded segments.  Once the store-and-link-forward reaches a 
point when CheckPoint should start, copies of  the Translation Table,  Allocation 
Bitmap, and Next Available Block-space are made in main memory, Pass Number is 
incremented, and then the ordinary operation of  DSF logical disk continues.  
Then, in between operations, when it is not busy, “on its leisure” (in other 
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words, by a thread with a low priority, for example) the DSF logical disk stores, 
segment by segment of the copies, to special dedicated place on the disk, (that it 
always alternates between 2 checkpoints). Because the store is from the copies, 
it does not block the ordinary work with the original data structures. When the 
copies of the tables are all stored to disk, the DSF logical disk also stores Pass 
Number and the kept value of Next Available Block-space, as the checkpointed 
value First Available Block-space. From that moment on, the newly stored data 
structures, plus all the block-spaces stored to since that CheckPoint started 
(from the block-space pointed at by the stored value of First Available Block-
space), suffice to recover all data structures, in case they are lost on a power-
failure. The scheme of store-and-link-forward may continue, and it even may 
wrap around the lowest disk addresses and then continue forward, but it should 
not pass over the block-space pointed at by the stored value of First Available 
Block-space. If a failure occurs while this incremental CheckPoint takes place, the 
information stored to disk on last CheckPoint, plus all the block-spaces stored 
to since that CheckPoint (which are uniquely identified by their being linked 
forward, starting with the block-space pointed at by First Available Block-space 
stored at last CheckPoint, and by their Pass_Number field containing the Pass 
Number stored in last CheckPoint, or a value greater than it by 1) suffice for a 
full recovery of DSF logical disk’s in memory data structures. 
 

3.7. Migration of Disks: 

On a storage system where each disk is only attached to a single host, failure of 
that host makes the disks attached to it inaccessible. When host failures last too 
long, system availability increases if disks can be detached from a failed host 
and attached to a functioning one. In our scheme, the physical disk always 
contains all the information needed to manage it as a DSF logical disk, and thus it 
can easily be removed from one host and attached to another one.  
  
 
 

3.8. Reads and Caching 

Figure 3 illustrates how DSF reads a data block given a file name and an offset 
within that file.  
To open a file, the Client first reads the file's parent directory block (labeled 1 in 
the diagram) to determine its inode address. Note that the parent directory is, 
itself, a data file that must be read using the procedure described above here. DSF 
breaks this recursion at the root; the Client learns the inode address of the root 
when it mounts the file system. 
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Figure 3 Read a Data Block 

 
                    
Once the Client determines the file inode address, it follows a Manager selection 
procedure, to locate/assign appropriate Manager for the file. 
As the top left of the path in the figure indicates, the Client first checks in its local 
cache for the block (2a); if the block is present, the request is satisfied from the 
local cache. Otherwise, it follows the lower path to fetch the data block over the 
network. The Client first uses its manager map to locate the correct manager 
from the inode address (2b) then sends a Read request to the Manager. If the 
Manager is not co-located with the Client, this message travels over the network. 
The Manager then tries to satisfy the request by fetching the data from the 
cooperative cache, i.e. from some other Client's cache. The Manager checks the 
cache consistency state (3a), and, if possible, forwards the request to another 
Client caching the requested data block. The "source" Client reads the block from 
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its local cache (3b) and forwards the data directly to the "destination" Client (the 
one that originated the request). The Manager is notified on the block arrival to 
the "destination" Client and adds it to the list of Clients caching the block that the 
manager maintains. 
 
If no Client can supply the data from its cache, the Manager routes the Read 
request to disk storage by examining the inode block.  The Manager may find the 
inode block in its local cache (4a) or it may have to read the inode block from 
disk. If the Manager has to read the inode from disk, its uses the inode address 
and the SSR (Storage Server Map) map (4b) to implicitly determine which Storage 
Server to contact. The manager then requests the inode block from the Storage 
Server, who then reads the metadata block from its disk and sends it back to the 
Manager (5). Once the Manager receives the inode block it uses the inode (6) to 
identify the address of the requested data block (if the file is large, the Manager 
may have to read several levels of indirect blocks to fine the data block's address; 
to do this the Manager follows the same procedure in reading indirect blocks as 
in reading the inode block; this is not shown here). 
The Manager uses the data block's address and the SSR map (7) to send the Read 
request to the appropriate Storage Server keeping the block. The Storage server 
reads the data block from its disk (8) and forwards the block directly to the Client 
that originated the Read request. 

4. Experimental Results 

All DSF components where initially implemented on NT/4 and then ported to 
Linux.  The NT version was up and running in 1999 and a heterogeneous system 
was running in the lab during the summer of 2000. 
A test bed for experimental measurements was implemented on a cluster of three 
NT/x86 machines... as depicted in Figure 4 
The clients ran on two machines, the File Managers ran on two machines and the 

Storage Manager ran on two machines. 
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Figure 4 Measurement/Demo Systems 

Test environment: 
 

3 NT machines (one PC Pentium III, 660Mhz (client + manager), 2 PC 
Pentium II, 266Mhz - one running mangers and the second running 
client), 128 MB RAM on each PC. Each PC running NT 4 SP 5 

Fast Ethernet (100 MB/sec) which is part of the site infrastructure (not a 
dedicated switch) 

NT NTFS native cache:  21MB 
DSF client - DSF managed cache: 6 MB/client (4k data blocks) 
DSF File Manager - DSF managed cache: 2 MB/file manager (1k metadata 

blocks) 
We did run two sets of tests: 

• A BMP file read with on screen presentation using Internet Explorer 
(graphics presentation) 
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• A benchmark named Postmark from Network Appliance Inc. 
(Postmark) 

 
4.1. Graphics presentation 

 
Test file: a BMP file of size 4.8 MB (1172 blocks * 4kbytes /block) 
Acronyms and special terms: 
 

DSS  - DSF storage Manager 
FMGR - DSF file manager 
DSF Client - A 2 layer NT driver (File system driver and Logical Volume & 

com driver) 
CC  - DSF cooperative cache mechanism 

 
Test results per the test file that is read from storage and presented on the screen: 
 

Table 1 File Access Experiment 

DSF Client 
Remote DSS 
Access 

DSF Client 
Local Cache 
File Access 

DSF Client 
CC Access 
through 
FMGR 

NT Native 
Local File 
Access 

NT Native 
cache access 

1.692 sec 8.79 msec 1.172 sec 1 sec 0.45 sec 
 
Note: 

DSF measurements were made with DSF internal diagnostic measurement 
tools 

NT file access time measurements were done using a stop watch (the test 
program was a browser and NTFS is not instrumented). 

 
As can be seen, on this experiment, CC file access time is 68 % of the DSS access 
time.  Having a faster machine for the other DSF client machine will make the 
CC faster because CC operation is CPU bound 
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4.2. Postmark 

 
Postmark v1.13 Experiment: 

553 file creations and deletions and 100 file transactions (47 reads + 53 appends); 
read/write combinations determined by a coin toss. Total read 261.84 kB and 
total write 2.87 MB 
 

Table 2 Postmark 

 Total test 
time 

File 
Create/sec 

File 
Delete/sec 

Read 
speed 
KB/sec 

Write 
speed 
KB/Sec 

NTFS 4 138 138 65.44  717.97  
DSF(DSS 
local)  

31 17 17 8.45 92.64  

DSF(DSS 
remote) 

33 16 16 7.93 87.03  

 
The experiment results are displayed in Table 2. Please note that those results 
were obtained with "first cut code", not optimized and including modules where 
basic function was the only goal pursued. 

5. Discussion 

The DSF attempts to build a serverless storage access system that distributes all 
aspects of storage management over cooperating machines interconnected by a 
fast, switched network.  The system should scale from two to several hundred 
machines, using commodity components (similar to the xFS goals). 
 
DSF attempts to outperform xFS by using a dynamic (rather than xFS' static) 
management distribution policy. 
DSF attempts to provide better reliability than xFS' by employing a simplified 
recovery mechanism, based on metadata shadowing (rather than xFS' log based 
mechanism), and by carrying out directory operations as atomic transactions at 
the storage level. 
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DSF is similar to Frangipani in using logical volumes to hide the distributed 
nature of the storage system from its clients.    It outperforms Frangipani by 
employing dynamic file management, block level cache synchronization, and 
cooperative caching. DSF is designed to a higher level of scalability than the 
cluster based file systems: up to several hundreds of commodity workstations. 
Cooperative caching:  Like XFS, DSF clients are assumed to contribute main 
memory and CPU cycles to support the cooperative caching    operations 
triggered by neighboring DSF clients. 
Taken together, DSF has advantages over existing systems. It provides extensible 
distributed     disk management, it moves functionality (e.g. allocation) down to 
lower levels (disk), and it provides stable storage and dynamic assignment of file 
managers. 
 
 

6. Conclusions 

 We have presented the Data Sharing Facility system that is based on a novel 
design: 
Use of logical volumes whereby logical addresses span several disks, self 
management of space, dynamic distribution of file management across multiple 
nodes (machines) for dynamic load balancing, cooperative caching, and stable and 
transactional storage in low layers (close to storage). 
Since there are no dedicated machines, any machine may assume the 
responsibilities of a failed component, resulting in improved fault-tolerance. 
 
Based on these design principles the DSF has the potential of improved features 
and properties in terms of scalability and recoverability over existing filesystems. 
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