
H-0146 November 17, 2002
Computer Science/Mathematics

IBM Research Report

Compiler Vectorization Techniques for a
Disjoint SIMD Architecture

Dorit Naishlos, Marina Biberstein, Ayal Zaks
IBM Research Division

Haifa Research Laboratory
Haifa 31905, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Compiler Vectorization Techniques for a Disjoint SIMD
Architecture

Dorit Naishlos
IBM Research Lab in Haifa

Haifa University, Israel

dorit@il.ibm.com

Marina Biberstein
IBM Research Lab in Haifa

Haifa University, Israel

biberstein@il.ibm.com

Ayal Zaks
IBM Research Lab in Haifa

Haifa University, Israel

zaks@il.ibm.com

ABSTRACT
This paper presents compiler technology that targets a novel
low-power Digital Signal Processor (DSP) architecture. The
architecture is characterized by the exploitation of data and
instruction level parallelism, and uses a large register file
with dynamically composed vectors for data manipulation.
We describe how an optimizing compiler can make use of the
vector register file with its flexible addressing to efficiently
support a range of data access patterns that are present in
the digital processing application domain. We describe new
challenges presented by this novel DSP architecture, as well
as new opportunities for aggressive yet low-overhead opti-
mizations that it introduces. Experiments show that an op-
timizing compiler can target such an architecture efficiently
to achieve performance that is comparable to the optimal
hand-generated code for key benchmarks. The resulting
compiler technology represents an advance of the state-of-
the-art in the area of DSP compilation.

Categories and Subject Descriptors
D.3.4 [Processors]: compilers, optimization; C.1.1 [Single
Data Stream Architectures]: RISC/CISC, VLIW archi-
tectures; C.1.2 [Multiple Data Stream Architectures
(Multiprocessors)]: Single-instruction-stream, multiple-
data-stream processors (SIMD)

General Terms
Performance, Algorithms

1. INTRODUCTION
The digital processing domain is characterized by very high
computing needs coupled with very low power consumption
requirements. Typical digital signal processing computa-
tions operate on sets of data elements (vectors), that corre-
spond to the digital representation of signals in the analog
domain. Such computations often perform the same oper-
ation on each element of a vector. Digital Signal Processor

Submitted to PLDI ’03 San Diego, California USA

(DSP) architectures are tuned to achieve efficient solutions
for this application domain.

Contemporary DSPs (such as StarCore SC140[6] and TI
C6x[9]) and multi-media extensions to general-purpose pro-
cessors (such as Intel MMX [20] and Motorola AltiVec [7])
focus on exploiting the natural parallelism present in the
applications by including features such as simultaneous ex-
ecution of multiple instructions (ILP — Instruction Level
Parallelism) and simultaneous execution of the same instruc-
tion on multiple data elements (SIMD — Single Instruction
Multiple Data). In particular, the SIMD features operate
on subsets of data elements packed into a “vector” register.

Optimizing compilers use vectorization techniques in order
to exploit the SIMD capabilities of the architecture. Such
techniques reveal temporal and spatial locality in the scalar
source code, often by performing various loop transforma-
tions, and then transform groups of scalar “local” instruc-
tions into vector instructions. However, the code generated
by most DSP compilers is still significantly less efficient than
hand-optimized code, even though much effort has been in-
vested in past years to devise advanced compilation tech-
niques for existing DSP architectures. As a result, large
portions of applications are being optimized by hand, which
is a slow, expensive and error-prone process.

There are various reasons why traditional optimizing com-
pilers cannot reach near-optimal performance for DSP ar-
chitectures. They mainly stem from having scarce resources
in the architecture with tight inter-dependencies. One of
the most difficult problems for vectorization is imposed by
the memory architecture, which typically provides access
to contiguous sequence of memory items. In addition, this
sequence is often restricted to start at naturally aligned ad-
dresses. The order in which data elements are needed for
computation, however, may be neither contiguous nor ade-
quately aligned. The use of traditional SIMD architectures
involves additional packing and unpacking complexity, for
concatenating data elements into registers and back. This
is often done by special instructions that gather, scatter and
permute the data elements as needed.

The eLite DSP of IBM [16] was explicitly designed to be
compiler-friendly by providing multiple resources with min-
imum inter-dependencies and irregular constraints, under
strict low-power considerations. In this paper we focus on
unique architectural features invented in the eLite project to

1

support efficient vectorization, and show how these features
can be utilized by a compiler to provide an effective solution
to the problems discussed above.

The architecture of the eLite DSP contains a large vector-
element register file, indirectly accessible through vector-
pointers which provide efficient solutions to data-reordering
and register-renaming problems. This indirectly accessible
vector register file supports SIMdD instructions — Single
Instructions that operate on Multiple disjoint Data. The
standard SIMD variation, SIMpD (Single Instructions that
operate on Multiple packed Data), is also supported in eLite.
We show how a range of access patterns can be vectorized
with very small constant overheads using SIMdD instruc-
tions. The large vector register file together with indirect
addressing encourages data reuse, and in particular high-
granularity reuse — across loops and loop nests, thus intro-
ducing new opportunities for optimizations as well as new
challenges that have not been traditionally related to the
vectorization domain.

The contributions of this paper are as follows:

• A new compiler optimization for SIMdD architectures
that efficiently vectorizes access patterns not neces-
sarily contiguous or properly aligned in memory, with
very small constant overheads.

• A new technique for exploiting large vector register
files with rotating and indirect addressing, allowing a
vectorizing compiler to aggressively exploit temporal
and spatial reuse and efficiently hide memory latencies.

• Automatically derived experimental results that com-
pare the performance of compiler-generated code with
hand-optimized code. Our results show that the com-
piler can achieve comparable results to hand-optimized
code.

The paper is outlined as follows: Section 2 provides the re-
quired background on the target architecture and the com-
piler. Section 3 shows the unique solution of the eLite DSP
to the data reordering problem. Section 4 describes how
powerful compiler-controlled caching can be implemented
to facilitate reuse and eliminate or hide memory latencies,
using innovative vector pointer register. In section 5 we
present experimental results that demonstrate the impact
of the different optimizations and the competitiveness of the
compiled code compared to hand-optimized assembly, and
Section 6 concludes.

2. BACKGROUND
The compilation technology described in this paper relies
on certain architecture features and is guided by the target
domain, i.e., kernels of applications in the areas of line and
wireless communications, and voice processing. We provide
more details on the computational characteristics and data
access patterns of such applications in Section 5. We now
give an overview of the SIMdD architecture targeted by our
compiler, and the general structure of the compiler with its
vectorization component.

2.1 The eLite DSP architecture
The eLite DSP [16] has a multiple-issue statically scheduled
architecture, that supports parallelism by executing mul-
tiple instructions packed in long-instruction-words (LIW),
in conjunction with single instructions operating on differ-
ent registers at the same time (SIMD). In this paper we
focus on the vector units; for more information on the ar-
chitecture the reader is referred to Moreno et al. [16]. The
eLite DSP has four separate functional units that operate on
VL-element vectors in SIMD fashion (where VL denotes the
vector-length currently set to 4): Vector Accumulator Unit
(VAU), Vector Element Unit (VEU), Vector Pointer Unit
(VPU) and Vector Mask Unit (VMU). Each vector unit is
associated with its own register file and operations, as fol-
lows:

VAU — performs SIMpD operations on (packed) 4-element
vector accumulator registers.

VEU — performs SIMdD operations on 4 vector-element
registers stored in a large multi-ported register file —
the Vector Element Register File (VEF). Every ac-
cess to the VEF is performed indirectly using Vector
Pointer Registers (VPRs). Each Vector Pointer Regis-
ter contains four elements which serve as indices into
the Vector Element Register file, providing access to
four arbitrary elements.

VPU — operates on the VPRs. In addition, whenever
VPRs are used to access the VEF, they can be in-
cremented implicitly by a predefined amount, option-
ally wrapping-around to implement circular addressing
within a predefined range of the VEF.

VMU — operates on vector mask registers, which can be
used analogously to predicate registers in scalar code.

This novel indirect register addressing mechanism enables
dynamic composition of vectors, and provides the basis for
the development of innovative compiler vectorization tech-
niques.

2.2 The compiler
The eLite DSP compiler has evolved jointly with the archi-
tecture, both guided by the performance evaluation of char-
acteristic benchmarks. The eLite DSP compiler is based
on Chameleon, the IBM VLIW Research Compiler originally
designed for tree-VLIW processors [15]. Chameleon uses an
enhanced form of Dependence Flow Graph (DFG) [21] for
its internal representation, and also uses static single assign-
ment (SSA, cf. [17]) and reverse-SSA forms extensively. It
has a repertoire of standard SSA-based optimizations, and
provides a rich infrastructure for compiler development. The
dependence-flow graph undergoes a number of transforma-
tions, including a novel vectorization phase which is the
subject of this paper, followed by register allocation and
scheduling, and finally emitting the assembly code.

2.3 The general vectorization scheme
A vectorization phase (called vectorizer) was added to the
compiler to make efficient use of the SIMD, and aspecially
SIMdD, instructions available on the target architecture.

2

Figure 1: Compilation with SIMDd Vectorization

The main objective of this phase is to extract as much data
parallelism as possible and to transform scalar code to SIMD
instructions, while enabling subsequent optimization phases
to improve the code further. Data and memory dependen-
cies that are present in the generated vectorized code are
modelled accordingly and relaxed as much as possible to fa-
cilitate following compilation phases — register allocation,
scheduling, software pipelining, and other optimizations.

An outline of the vectorization process is given in Figure 1.
High-level loop transformations should be applied prior to
the vectorizer in order to simplify control structures, expose
reuse opportunities, and form vectorizable loops if possi-
ble. Such transformations are described in Wolfe [26], and
are not in the scope of this paper. The vectorizer contains
an analysis stage that identifies vectorizable loops, focusing
on inner-most and doubly nested loops. In addition to the
standard tests that include memory and data dependence
analysis ([26]), and architecture-specific analyses that help
guide the vectorization process (e.g., identification of reduc-
tion forms), we perform the following analyses:

Data Access Pattern Analysis Identify the data access
patterns and memory alignment information. These
are needed in order to compute the minimum resources
required for vectorizing each loop, and also for setting
up vector pointers.

Global Reuse Analysis Identify the set of memory loca-
tions accessed in each loop by leaf-to-root propagation
through the loop hierarchy. This reveals reuse oppor-
tunities both across different iterations of the same
loop and across loops.

Guided by the information provided by the analysis phase,
the Vector Element File (VEF) Manager selects the schemes
for data reorganization (see Section 3) and data reuse (see
Section 4), and designates VEF areas to be used by each
scheme. The Vectorizer then performs the actual code trans-
formation which includes unroll-and-jam [3]. Finally scalar
operations are replaced with vectorized counterparts, and
the DFG is updated accordingly. Subsequent scheduling
phases that take place after vectorization may continue to in-
teract with the VEF manager in order to improve the sched-
ules by removing VEF anti-dependencies. This depends on
VEF availability, and imposes no changes to vector instruc-
tions nor unrolling of loops, but only minimal changes to vec-
tor pointer setup (see Section 4). The next sections describe
the pattern analysis, reorganization schemes, and VEF ap-
plication for data caching in further detail.

3. DATA REORGANIZATION
Many DSPs and multimedia extensions contain “packed”
SIMD (SIMpD) units, where the vector instructions operate
on ordered sets of register-packed data for both input and
output. Such architectures are vulnerable to data reorgani-
zation problems, which occur when the input to one vector
instruction is a permutation of another vector instruction’s
output, or a combination of outputs produced by several
vector or scalar instructions. The memory architecture may
also cause data reorganization problems, when the order of
input (or output) to a vector instruction is not directly sup-
ported by memory operations. Situations that require data
reorganization are widespread in the context of DSP appli-
cations.

In this section we discuss solutions to data reorganization
problems in SIMpD and SIMdD architectures. We also
present compilation techniques that implement a range of
vector reordering patterns at a cost of only a small number
of additional SIMdD operations.

3.1 Reorganization in SIMpD Architectures
In SIMpD, the traditional sub-word SIMD architectures,
vector instructions operate on vectors that are packed into
vector registers. Such architectures provide capabilities to
pack and unpack data to and from vector registers. These
capabilities are often provided within memory operations [1,
5]. Reordering data in conjunction with memory operations
enables packing and unpacking vectors by going through
memory. Most architectures also provide vector register
copy instructions that permute the data, or instructions
that merge two vectors [1, 7, 20, 18]. Such instructions can
be used to pack and unpack vectors directly, without going
through memory [24].

This approach for reorganizing vector data has a number of
drawbacks. If the desired reordering cannot be associated
with an appropriate memory operation, there is an overhead
of additional vector permute or merge instructions. On the

3

other hand, if an ordering is associated with a memory oper-
ation, it will usually increase its latency, which is relatively
long to begin with. Moreover, reordering within memory
operations may cause a series of cache misses when address-
ing several remote locations, and it does not exploit group
spatial reuse [26]. If the same data is reused by two vector in-
structions in different orders, additional permuting instruc-
tions are neccesary. Also, if reordering is applied repeatedly
(e.g., within a loop), a performance penalty is incurred each
time.

3.2 Reorganization in SIMdD and eLite
In contrast to SIMpD architectures, the vectors manipulated
by SIMdD instructions are composed “on the fly”. In the
eLite DSP this is achieved by vector pointers that contain VL

(Vector Length) independent indices into the vector element
file. This architectural feature allows permuting the access
without actually moving any data. After setting up a vector
pointer according to one vector instruction, subsequent in-
structions may be able to reuse this pointer at no additional
cost by using implicit update capabilities. Thus a one-time
penalty for defining the permutation is incurred when set-
ting up the vector pointer, instead of having a penalty at
each access.

The compiler realizes this approach to data reorganization
in SIMdD using vector pointers, as follows. The techniques
apply to a general vector-length; we use VL=4 here for sim-
plicity. A vector instruction may have one or more refer-
ences to vectors, which serve as input or output. For a
vector v = (v1, v2, v3, v4) define the starting point sp(v) to
be the VEF index of the first vector element v1, and de-
fine the vector pattern vp(v) to be the 3 offsets (d1, d2, d3)
between the consecutive pairs of elements vi, vi+1. The el-
ements of a vector v with starting point sp(v) and pattern
vp(v) = (d1, d2, d3) are located in the VEF at positions

{sp(v), sp(v) + d1, sp(v) + d1 + d2, sp(v) + d1 + d2 + d3}.
If the patterns vp(v) and vp(u) of two vectors v and u are
identical, the distances between every pair of corresponding
elements (vi and ui) are the same, and are equal to sp(v)−
sp(u); in such cases we define this value to be the distance
d(v, u) between the two vectors.

When setting up a vector pointer, a starting point and vector
pattern are specified. In addition, a distance and wrap-
around parameters may be given, to be used for implicit
updates. For example, setting a vector pointer according to
the consecutive pattern (1, 1, 1) with distance 4 and starting
position sp, abbreviated as [sp(1, 1, 1)4], provides sequential
access to the VEF starting from sp.

The same vector pointer can be used by two references, if
they refer to vectors with identical patterns. This is because
the pointer can be updated (implicitly or explicitly) accord-
ing to the distance between the two vectors. Furthermore,
a series of references to vectors with identical patterns can
share the same vector pointer with no additional cost, if all
non-zero distances between consecutive pairs are the same.
The goal is therefore to partition the set of vector references
into separate groups, each assigned a single vector pointer.
Similar partitions of scalar accesses to memory have been
studied in the past [14, 13]. Figure 2 outlines the algorithm

1. Identify a set of references to vectors in the VEF;

2. Classify the references into ordered groups such that:

• all references in a group have the same pattern, and

• the non-zero distances between pairs of consecutive ref-
erences in a group, according to execution order, are the
same.

3. For each group:

• calculate the vector pointer setup parameters;

• setup the vector pointer for the first reference;

• wire the data dependencies among the references in the
group.

Figure 2: High-level algorithm for vector pointer
setup

that realized this efficient approach to data organization via
vector pointers.

Having powerful and efficient data-reorganization facilities
for SIMdD instructions eliminates the need for special vec-
tor scatter/gather or permute instructions, and also has an
important advantage for the memory architecture: it may
be sufficient to provide only the most efficient data access
patterns to memory. For instance, the memory architecture
in the eLite DSP provides access to VL consecutive elements
in memory, properly aligned on VL boundary, with an op-
tion to disable storing any subset of elements. In the de-
tailed examples below we show how vector operations on
non-contiguous or non-aligned data can still be performed
efficiently.

3.3 Reordering via Vector Pointers: example
In DSP applications, the most widespread non-consecutive
vector access pattern is probably the constant-stride pat-
tern (d, d, d), in particular for d = 2. This pattern is often
encountered in DSP computations that deal with complex
numbers, where the real and imaginary parts are interleaved
in the same input or output array. The complex data needs
to be “de-interleaved” in order for SIMD-style computations
to be carried out, if different instructions apply to the real
and imaginary parts. The results may then need to be “in-
terleaved” back. Constant-stride patterns appear in other
contexts as well, such as in decoders and encoders for inter-
leaved codes, or in computations on “very long” data types
not supported directly by the architecture.

Consider for example the complex inner-product computa-
tion shown in Figure 3. A standard approach to the vec-
torization of this example uses four SIMD vector multipli-
cations, followed by one vector subtract and three vector
add operations, and finally two reduction operations to pro-
duce the scalar results (see Figure 4). We assume for clarity
that len is known to be divisible by VL. Otherwise, standard
unrolling and memory misalignment techniques (described
below) are used. We next examine how the data is loaded
into the VEF and how it is accessed by the multiplications.

Assume at first that the input arrays are properly aligned on
VL boundaries; this assumption is later relaxed. Two loads
are needed in order to bring 4 elements of re1 needed for

4

void inner product(int len, short *a1, short *a2,
short *re result, short *im result){

short re1, im1, re2, im2;
short re1re2, re1im2; im1re2; im1im2
short re, im;
short accre = 0;
short accim = 0;
for(int i = 0; i < len; i++){

re1 = a1[2*i];
im1 = a1[2*i+1];
re2 = a2[2*i];
im2 = a2[2*i+1];
re1re2 = re1*re2;
re1im2 = re1*im2;
im1im2 = im1*im2;
im1re2 = im1*re2;
re = re1re2 - im1im2;
im = re1im2 + im1re2;
accre = accre + re;
accim = accim + im;

}
*re result = accre;
*im result = accim;

}

Figure 3: Inner product of complex vectors

each iteration, such as: a1[0],a1[2],a1[4],a1[6], because
one load can only access 4 elements that are aligned and
consecutive in memory. However, these same two loads also
bring 4 elements of im1. One possibility for vector pointer
setup is depicted on Figure 5a. Eight consecutive elements
of each array (half of which are real and half imaginary)
are loaded into consecutive locations in the VEF. For exam-
ple, elements a1[0],a1[1],. . .,a1[7] are loaded into vector-
element registers 0, . . . , 7, respectively. This provides all the
data needed for the four multiplications (in a single itera-
tion), and can be done by two loads sharing the same vector-
pointer (VPwrite) setup to [0(1, 1, 1)4] — a consecutive pat-
tern starting at element 0.

Each vector multiplication instruction has references to two
vectors, one from each input array. Assuming the data was
loaded into the VEF as described above, the vector pat-
terns of these references are (2, 2, 2). There are several al-
ternatives for assigning vector pointers to these references.
One possibility is to assign four pointers, one for each part
(real/imaginary) of each input array, using the following
setups: [a1[0](2, 2, 2)8], [a1[1](2, 2, 2)8], [a2[0](2, 2, 2)8] and
[a2[1](2, 2, 2)8]. Referring to Figure 5a, [a1[0](2, 2, 2)8] cor-
responds to VPreadRe, and [a1[1](2, 2, 2)8] corresponds to
VPreadIm. In each iteration, each of these pointers will be
used once without update, and then once with implicit up-
date of distance 8.

More vector pointers can be used (if available) to eliminate
dependencies and produce more regular code: each pointer
can be split into two pointers that are updated after ev-
ery use. On the other hand, the number of vector pointers
can also be reduced if desired: two pointers to real and
imaginary parts of the same input array can be merged into
one pointer, because they have identical patterns (see Fig-
ure 5b). By merging two pairs of pointers, a minimum of
two vector pointers suffices. However, the merged pointers
will need to be updated by at-least two different distances.
This demonstrates the various alternatives to consider when

void v inner product(int len, short *a1, short *a2,
short *re result, short *im result){

short re1[1:4], im1[1:4], re2[1:4], im2[1:4];
short re1re2[1:4], re1im2[1:4]; im1re2[1;v]; im1im2[1:4]
short re[1:4], im[1:4];
short accre[1:4] = 0;
short accim[1:4] = 0;
for(int i = 0; i < len; i+=4){

re1[1:4] = a1[2*i,2*i+2,2*i+4,2*i+6];
im1[1:4] = a1[2*i+1,2*i+3,2*i+5,2*i+7];
re2[1:4] = a2[2*i,2*i+2,2*i+4,2*i+6];
im2[1:4] = a2[2*i+1,2*i+3,2*i+5,2*i+7];
re1re2[1:4] = re1[1:4]*re2[1:4];
re1im2[1:4] = re1[1:4]*im2[1:4];
im1im2[1:4] = im1[1:4]*im2[1:4];
im1re2[1:4] = im1[1:4]*re2[1:4];
re[1:4] = re1re2[1:4] - im1im2[1:4];
im[1:4] = re1im2[1:4] + im1re2[1:4];
acc re[1:4] = acc re[1:4] + re[1:4];
acc im[1:4] = acc im[1:4] + im[1:4];

}
*re result = reduce2sum(acc re[1:4]);
*im result = reduce2sum(acc im[1:4]);

}

Figure 4: vectorized inner prod. of complex vectors

(a) Standard (b) VP-economic

Figure 5: Reordering at VEF read

Figure 6: Reordering at VEF write

assigning vector pointers, and the associated tradeoffs.

The above vector pointer setups used a consecutive pattern
for loads and reordered patterns for accessing the VEF. This
way, elements appear in the VEF in the same order as they
appear in memory, which may be useful for debugging and
other purposes. It is possible to reorder the data as it is
loaded into the VEF, so that it can then be accessed in a
consecutive pattern. Referring to Figure 6, the pattern of
the vector pointer VPwrite used by the load is [a1[0](x, 1 −
x, x)2], where x = a1[1] − a1[0]. This is possible in general
for constant-stride patterns (d, d, . . . , d) where d divides VL

, and corresponds to a VEF allocation containing d areas
of size VL each rather than a single area of size d*VL that is
required by the original approach. Such a disjoint allocation
might be preferred, depending on VEF availability.

5

Reordering data to be stored from the VEF into memory is
done along the same lines. In general, the input for SIMdD
instructions in eLite can originate from memory (as in the
above example), from the output of SIMpD instructions, or
already reside in the VEF. In the latter case, the vector
patterns are determined directly by the SIMdD instructions
according to the location of the data in the VEF. In the
first two cases however, there is freedom in choosing a VEF
allocation scheme and the corresponding vector patterns for
transferring the data into the allocated VEF indices and out
to the SIMdD instructions, in a way that addresses perfor-
mance requirements and resource limitations.

The complex inner-product example contains temporal and
spatial reuse, where all the vector patterns are identical.
There are cases where several distinct vector patterns are
used, all referring to the same data. One such example
involves squaring a matrix, which requires accessing both
its rows and its columns. Vector pointers can be used to
implement such multiple accesses efficiently, again without
reordering the data itself.

3.4 Handling Alignment Constraints
Memory alignment constraints raise problems which are re-
lated to data reordering. Accessing a block of memory from
a location which is not aligned on a certain boundary is of-
ten prohibited or bears a heavy performance penalty. Tech-
niques used to avoid these penalties such as loop-peeling
[2] or dynamic alignment detection [11] do not always work
and increase code size. Techniques that try to confront this
problem usually incur a penalty that grows linearly with the
data set size [12, 5].

Our compiler handles data alignment as a special case of
data reordering, where the access to a contiguous data set is
slightly shifted in order to comply with the memory align-
ment constraints. For example, if the input arrays in Fig-
ure 3 are not aligned (or not known to be aligned), we pro-
ceed as follows. Vector loads are generated as if the arrays
start at the nearest preceding aligned address and end at the
nearest succeeding aligned address. This is accomplished by
having one extra load in the loop prologue, and requires a
few extra spaces in the VEF, but the vector pointer pattern
remains the same. The vector pointers used to access the
VEF also retain the same pattern, but skip over the first
few loaded elements.

Stores to unaligned data are handled similar to loads, except
that the first and last stores are masked appropriately so as
not to write past the bounds of the target array. Thus, we
are able to handle loads and stores into unaligned locations
using accesses to aligned memory only, paying only a small
constant performance penalty.

4. DATA MANAGEMENT
The previous section showed how data reorganization prob-
lems can be solved efficiently with the use of vector pointers.
This section shows how vector pointers can also help im-
prove performance through the exploitation of spatial and
temporal reuse, if vector data is managed appropriately. In-
deed, exploiting reuse opportunities aggressively is known
to have dramatic effects on application performance, partic-
ularly because it can eliminate or reduce the overhead asso-

ciated with long memory access latencies. This is especially
true for DSP and multimedia kernels, characterized by hav-
ing tight loops that perform well-structured computations
on single- or multi-dimensional arrays.

4.1 Data Management: Existing Solutions
The classic solution to the problems of long memory laten-
cies is aggressive usage of large multi-levelled cache hier-
archies. Caches are very effective for most-frequently used
data, but scientific computations which often lack tempo-
ral locality of accesses may still spend more than half of
their execution time stalled on memory requests [25]. Much
work has been done in the past on detecting temporal and
spatial locality within loops, and exploiting them using vari-
ous loop transformations to improve hardware cache perfor-
mance [26]. Recent work also focused on inter-nest locality
[10].

A complementary approach uses special prefetching instruc-
tions, generated either by a compiler or by the hardware at
runtime, that attempt to anticipate future accesses [8, 25].
Such techniques address the latency hiding problem, rather
than data reuse issues.

Various hardware mechanisms were proposed to augment
the cache performance, especially for streamed applications
[19, 4, 22]. Most of these mechanisms are not controlled
by software and cannot benefit from the data flow infor-
mation available to the compiler. Such information can be
utilized by compiler-controlled caching, which requires loop
unrolling [24] or other solutions to register naming prob-
lems [8]. In contrast, the SIMdD and VEF available in
the eLite DSP can support aggressive compiler-controlled
caching, without requiring loop unrolling, as discussed next.

4.2 Cache Management in the VEF
The large number of registers available in eLite’s vector
element file, together with the indirect access using vec-
tor pointers, are ideal for implementing a software-managed
vector-data cache. However, the latency of accessing the
VEF is greater than that of ordinary (scalar or packed vec-
tor) registers. As a consequence, very simple benchmarks
such as vector addition are vectorized more efficiently using
traditional SIMpD instructions and packed vectors, rather
than utilizing the VEF. In general, vectorizing a computa-
tion using SIMdD instructions that access the VEF is pre-
ferred to using SIMpD instructions if any of the following
holds: (1) data reorganization is needed, as described in Sec-
tion 3; (2) unit assignment considerations — these are not
in the scope of this paper; (3) data reuse can be exploited.

Spatial and temporal reuse can be exploited to hide or re-
duce the overhead of loading data into the VEF, making
the use of SIMdD more attractive. Such reuse occurs, for
example, when (all or part of) the data required by a com-
putation already resides in the VEF, because it was needed
or put there by a previous computation. In other cases only
a few loads that are scheduled early may suffice to provide
all the data required by a computation. In all such cases, the
key issue is to be able to move loads early, possibly even to
loop prologues, and then merge overlapping loads. In order
to load ahead of time (“pre-load”) one needs a large storage.
However, in order to use preloaded data efficiently, one also

6

cnt0 := 4
loop:

i0 := load(i5++)
i10 := i10 + i0
branch loop if (cnt0-- != 0)

Figure 7: A simple loop example

needs rotated addressing, as explained below. Interestingly,
the VEF with its vector pointers supplies these needs in a
new and powerful way.

4.3 Rotating Vector Registers
The overhead of load operations can often be eliminated by
passing values in registers instead of through memory, or
hidden by scheduling loads early. A major difficulty with
this approach is register renaming (cf. [17]). Consider, for
example, a simple loop for summing the elements of a vector,
depicted in Figure 7. Suppose that in this example, the data
that resides in addresses i5. . . i5+3 can be passed in registers
i0, i1, i2, i3. In order to use these registers, the com-
piler would typically need to unroll the loop, which might
seriously affect code size. Another solution is to perform
register rotation, either by software [3] or by special hard-
ware [8]. If loads cannot be eliminated, their latencies may
be hidden by scheduling them early, in a software-pipelined
fashion. Here again, several values are kept “alive” at the
same time, requiring more than one physical register and
hence duplication of code or rotation of registers.

The indirect register addressing of eLite’s vector pointers
solves this naming problem by providing rotating vector-
register addressing, that is much more powerful than ex-
isting rotating (scalar-)register mechanisms. Each vector-
pointer defines the set of vector-elements over which it ro-
tates, independent of other vector-pointers. The elements
over which a vector pointer rotates need not be consecutive;
indeed, two rotating vector pointers may have some elements
in common. The rotation itself is activated for each vector
pointer independently, and is not associated with any global
instruction. Furthermore, changing the number of registers
over which to rotate is accomplished by simply changing a
parameter upon vector pointer setup, rather than reassign-
ing registers to all relevant instructions. This is an impor-
tant advantage, because such changes may be applied late
or even after the vectorization phase takes place.

Consider for example a vector pointer that rotates over the
same VL elements. Such a vector pointer creates anti depen-
dencies which might severely constrain instruction schedul-
ing and software pipelining. Increasing the number of ele-
ments over which the vector pointer rotates to, say, 2*VL ,
will increase the distance of these dependencies and enable
aggressive code motion. Such decisions may be taken during
scheduling (i.e., after vectorization) according to the VEF
availability, or during vectorization in anticipation of future
scheduling needs.

Another very important advantage of using vector point-
ers for rotating addressing, is that the operations writing
to rotated registers are “disengaged” from the operations

int accumulate(int len, short *a){
short tmp;
int result = 0;
for(int i = 0; i < len; i++){

tmp = a[i];
result += tmp;

}
return result;

}

Figure 8: Vector accumulation example

int v accumulate(int len, short *a){
short v tmp[1:4];
int v result[1:4] = 0;
int result;
for(int i = 0; i < len; i+=4){

v tmp[1:4] = a[i,i+1,i+2,i+3];
v result[1:4] = v result[1:4] + v tmp[1:4];

}
result = reduce2sum(v result[1:4]);
return result;

}

Figure 9: Vector accumulation: naive vectorization

(a) Naive (b) With pre-loading

Figure 10: Vector pointer setup for v accumulate

that read from them. This is true for indirect addressing
in general. Using vector pointers, however, provides rotat-
ing addressing in conjunction with data reorganization, as
described in the previous section.

4.4 Pre-loading into the VEF: an example
We illustrate the potential of using vector pointers for rotat-
ing addressing by the following example. Consider a func-
tion computing the sum of all elements in a vector (Fig-
ure 8). The “naive”, lazy-loading vectorization of this func-
tion is shown on Figure 9, with corresponding vector pointer
setup shown on Figure 10a.

For architectures with high load latencies, such an imple-
mentation would spend most of its time in the loop waiting
for the load to complete. In order to achieve optimal per-
formance, the loads (or the entire loops) should be software
pipelined (cf. [23]): several loads should be executed be-
fore the loop, each iteration should work on data that was
loaded in some previous iteration and fetch data for one of
the following iterations. In the eLite DSP this optimiza-
tion can be performed by simply (1) placing loads in the
loop prolog, and (2) extending the VEF area allocated for
the array, so that it will be large enough to hold all the

7

loaded elements until they are last used. The add instruc-
tion remains intact; only the setup of the pointer it uses
should be modified according to the allocated VEF space.
Figure 10b shows the state of the vector pointers at the
loop entry, assuming that the number of loads hoisted to
the loop prolog is three. After executing these three loads,
the vector pointer used by the loads points to the fourth
4-element chunk of the allocated area (assuming again that
VL =4 for simplicity). In the course of the first iteration,
this chunk will be filled with array elements a[12]–a[15],
while the addition instruction will read elements a[0]–a[3]
provided by the first load. An implicit update with wrap-
around set at distance 16 will then rewind the load pointer
VPwrite back to the beginning, so that the following (fourth)
load will overwrite the first load with array elements a[16]–
a[19]. Meanwhile the pointer used by the add VPread will
continue to the second vector (holding array elements a[4]–
a[7], and will loop back to the first vector only at the end
of the fourth iteration.

The compiler detects such reuse opportunities, and allocates
VEF entries to support pre-loading across loop iterations
and between loops according to available resources, in order
to hide load latencies and improve performance.

5. EXPERIMENTAL RESULTS
This section evaluates the different optimizations discussed
in previous sections, and demonstrates the overall competi-
tiveness of the compiler with hand-optimized codes. Being
an example of an SIMdD architecture, the eLite DSP pro-
vides an excellent test-bed for evaluating the compilation
techniques described above.

5.1 Experimental methodology
The experimental results we present in this section were gen-
erated automatically using a cycle-accurate simulator and
profiler. Code generated by the eLite compiler, incorporat-
ing the technology described in this paper, is compared to
code optimized for the eLite architecture independently by
expert assembly programmers.

Table 1 provides a brief description of the benchmarks used
in our experiments. These benchmarks are representative
of the main computation kernels in our target application
domain. The benchmarks cover a range of access patterns
including consecutive (eudist), reverse(rfir-1, rfir-b, xfir-b),
unaligned (u-add), strided (xfir-b, dec, inter), and column-
wise (v-sad, idct) patterns, both when writing to and when
reading from the VEF. Typically a single benchmark fea-
tures patterns of more than one type. In addition, the
benchmarks consist of different loop hierarchies, including
single-nest loops (benchmarks numbered 8–12 in the table),
doubly-nested loops (benchmarks 1–7) as well as more in-
volved Control Flow Graphs (benchmark 13). As such, these
benchmarks reflect different data orderings and reuse oppor-
tunities.

5.2 Comparison with hand written code
The high performance demands in the digital processing do-
main have traditionally required programming DSP’s in as-
sembly language. The eLite DSP compiler, using innovative
SIMdD compilation capabilities, is attempting to close the

Name Description
1 rfir-b real FIR filter for a block of outputs
2 xfir-b complex FIR filter for a block of outputs
3 mcc maximum cross correlation
4 mat matrix multiply by vector
5 inter interpolation with up-sampling rate 1:2
6 dec decimation with down-sampling rate 2:1
7 v-sad sum of absolute differences for video applications
8 rfir-1 real FIR filter for a single output
9 gather gather dispersed bits into a vector
10 prod inner product of two vectors
11 eudist euclidian distance of two vectors
12 u-add summation of two unaligned vectors into a third
13 idct 2-D inverse Discrete Cosine Transform

Table 1: Benchmark Description

gap between compiler generated and hand written codes, as
we demonstrate here. Figure 11 displays the relative exe-
cution time of compiled codes, normalized to hand-written
execution time. In both cases the codes are vectorized using
the VEF and the techniques described in this paper.

In most cases the hand-written codes do not make any as-
sumption regarding the problem size except that it is divis-
ible by some amount (usually this amount is VL=4). The
compiler is given a similar assumption in these cases. The
relative results for these cases are denoted as “general data
size”. In addition, we present the relative performance that
is achieved under the assumption that the data set fits into
the VEF, an assumption reasonable in the respective appli-
cation domain. These are denoted as “data fits in VEF”.
Some benchmarks were originally tailored to a fixed data
size; for those we do not present results under the “general
data size” category.

rfir-b
xfir-b

inter
dec

idct
v-sad

mcc
mat

rfir-1
prod

eudist
u-add

gather

benchmarks

0

0.5

1

1.5

2

re
la

tiv
e

ex
ec

ut
io

n

general data size data fits in VEF hand-written

Compiled vs. Hand-written

Figure 11: Execution time of compiler generated
codes relative to hand written codes

For the general data size case, the average execution time
degradation of compiled codes compared to hand-written
codes is 35%, with an average of 25% difference for single-
nested loop kernels and an average of 44% for multi-nested
loop kernels. The main reason for this difference lies in the
compiler scheduling scheme which is currently less efficient
in exploiting ILP at higher levels of loop hierarchies.

For the case where the data fits into the VEF, the average

8

performance difference is 15%, with an average of 7.5% for
single-nested and 19% for multi-nested loop kernels. The
main reason for the improved relative performance for this
set of benchmarks is the more efficient scheduling. The worst
relative performance for an inner-loop kernel (40%) is ob-
tained by the kernel “gather”, where the data size is not
assumed to be divisible by 4; at present the epilogue gener-
ated by the compiler for handling such cases is less efficient
than hand-written code.

5.3 Impact of VEF space usage
As described in Section 4, the rotating registers technique fa-
cilitates a pre-loading optimization which utilizes additional
VEF area and facilitates more aggressive scheduling. Fig-
ure 12 demonstrates the impact of VEF size on performance,
by comparing the two extremes: minimal VEF size and max-
imal VEF size. Minimal VEF size implies that exactly VL

elements (4 in our case) are reserved for each array, just
enough to enable SIMdD vectorization. Maximal VEF size
implies that the VEF space reserved for an array is extended
as much as possible; if the data size is known at compile
time, space for the entire data will be allocated in the VEF
(if possible; for the benchmarks at hand, this was the case).
If the data size is not known at compile time, the reserved
VEF space will be extended by a default amount.

rfir-b
xfir-b

inter
dec

rfir-1
prod

eudist
gather

Benchmarks

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ex
ec

ut
io

n
tim

e
im

pr
ov

em
en

t

general data size fixed data size

Impact of VEF space reservation

Figure 12: Impact of amount of VEF space reserva-
tion on performance

The impact of the pre-loading optimization, as shown in
Figure 12, reflects the amount of computation being per-
formed on each element; if a large amount of computation
takes place, part of the computation will hide the latency of
loading other elements, leaving a pre-loading optimization
only little room for further improvement. This is the case
in “eudist” for example. However, if very little computation
takes place, then most of the code will be stalled waiting for
loads to complete, and the impact of pre-loading is therefore
increased. This is the case in “prod” for example.

5.4 Impact of data reuse
Computations containing nested loops often introduce the
opportunity to exploit data reuse across iterations in an
outer nesting level, using the techniques described in Section

4. We have applied these inter-nest techniques to the multi-
nested loop kernels, under the assumption that the data set
fits into the VEF. In cases where the ranges accessed in dif-
ferent outer-loop iterations overlap, the improvement factors
achieved were 27%, 29%, 20%, and 10% in dec, inter, rfir-b
and xfir-b respectively. The variation between the different
benchmarks is due to the amount of overlap and the relative
percentage of load operations in the computations.

The kernels that have column-wise access patterns (idct,
v-sad) have no overlap between different iterations, and are
therefore not improved by this inter-nest optimization. How-
ever, by applying a more aggressive analysis that searches
for reuse even higher in the loop-hierarchy tree, additional
improvement can be achieved. The column-wise access pat-
tern in idct is encapsulated within another loop, and fol-
lowed by a similar triply-nested loop; exploiting the data
reuse available across these loops and loop nests provides a
42% improvement in execution time.

6. CONSLUSION
This paper presents a set of compilation techniques for an
SIMdD architecture. The novel capabilities of the architec-
ture can provide low-overhead and efficient solutions to the
traditionally difficult problems of data reordering, data mis-
alignment, and register renaming. We especially focused on
applying these techniques to compiler vectorization and data
reuse optimizations. Using these techniques, we demon-
strated that the performance of the code generated by our
compiler is well within a factor of 2 compared to hand-
optimized code for a set of benchmarks representative of
the DSP domain. For most benchmarks, the degradation
did not even exceed 20%.

Work on the vectorizing compiler for the eLite DSP is still
in progress. In particular, improved techniques for efficient
vector element file (VEF) allocation including prioritization
are investigated, to allow the compiler to take full advan-
tage of the VEF resources available when larger applications
are considered. The interaction between the VEF Manager
and instruction scheduling (including software pipelining)
can also provide extra optimization opportunities. In addi-
tion, we are exploring the potential for applying the VEF
and vector pointer capabilities for additional optimizations,
such as vectorization of induction variables and caching of
scalar values.

Combining novel architecture capabilities with innovative
compiler techniques allows our compiler to seamlessly and
and efficiently solve data reorganization problems, and then
focus on critical issues of data reuse and efficient scheduling,
in the context of SIMD vectorization. This is another major
step on the way to a competitive DSP programmable in a
high-level language.

7. REFERENCES
[1] K. Asanovic and D. Johnson. Torrent architecture

manual. Technical report, ICSI, 1996.

[2] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian.
Efficient exploitation of parallelism on pentium iii and
pentium 4 processor-based systems. Intel Technology
J., February 2001.

9

[3] D. Callahan, S. Carr, and K. Kennedy. Improving
register allocation for subscripted variables. In PLDI,
pages 53–65, June 1990.

[4] W. Y. Chen, R. Bringmann, S. A. Mahlke, R. E.
Hank, and J. E. Sicolo. An efficient architecture for
loop based data preloading. In Micro, 1992.

[5] J. Corbal, R. Espasa, and M. Valero. Exploiting a new
level of DLP in multimedia applications. In Intl.
Symposium on Microarchitecture, pages 72–, 1999.

[6] P. D’Arcy and S. Beach. Starcore sc140: A new dsp
architecture for portable devices. In Wireless
Symposium. Motorola, September 1999.

[7] K. Diefendorff and P. K. D. et al. Altivec extension to
powerpc accelerates media processing. IEEE Micro,
March-April 2000.

[8] G. Dohsi, R. Krishnaiyer, and K. Muthukumar.
Optimizing software data prefetches with rotating
registers. In PACT, pages 257–267, 2001.

[9] T. Instruments. www.ti.com/sc/c6x, 2000.

[10] M. Kandemir, I. Kadayif, A. Choudhary, and J. A.
Zambreno. Optimizing inter-nest data locality. In
PACT, pages 127–135, 2002.

[11] A. Krall and S. Lelait. Compilation techniques for
multimedia processors. Intl. J. of Parallel
Programming, 28(4):347–361, 2000.

[12] S. Larsen, E. Witchel, and S. Amarasinghe.
Techniques for increasing and detecting memory
alignment. Technical Memo 621, MIT LCS, November
2001.

[13] R. Leupers and F. David. A uniform optimization
technique for offset assignment problems. In 11th Int.
Symp. on System Synthesis (ISSS), 1998.

[14] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and
A. Wang. Storage assignment to decrease code size. In
PLDI. ACM SIGPLAN, 1995.

[15] J. H. Moreno, M. Moudgill, K. Ebcioglu, E. Altman,
B. Hall, R. Miranda, S. K. Chen, and A. Polyak.
Simulation/evaluation environment for a vliw
processor architecture. IBM Journal of Research and
Development, 41(3):287–302, May 1997.

[16] J. H. Moreno, V. Zyuban, U. Shvadron, F. Neeser,
J. Derby, M. Ware, K. Kailas, A. Zaks, A. Geva,
S. Ben-David, S. Asaad, T. Fox, M. Biberstein,
D. Naishlos, and H. Hunter. An innovative low-power
high-performance programmable signal processor for
digital communications. Reseach Report RC22568,
IBM, Sept 2002.

[17] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[18] H. Nguyen and L. K. John. Exploiting simd
parallelism in dsp and multimedia algorithms using
the altivec technology. In Intl. Conf. on
Supercomputing, pages 11–20, 1999.

[19] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient
utilization of scratch-pad memory in embedded
processor applications. In European Design and Test
Conf., March 1997.

[20] A. Peleg and U. Weiser. Mmx technology extension to
the intel architecture. IEEE Micro, pages 43–45,
August 1996.

[21] K. Pingali, M. Beck, R. Johnson, M. Moudgill, and
P. Stodghill. Dependence flow graphs: an algebraic
approach to program dependencies. In POPL, pages
67–78, 1991.

[22] M. Postiff. Compiler and Microarchitecture
Mechanisms for Exploiting Registers to Improve
Memory Performance. PhD thesis, U. of Michigan,
2001.

[23] J. Ruttenberg, G. R. Gao, A. Stoutchinin, and
W. Lichtenstein. Software pipelining showdown:
Optimal vs. heuristic methods in a production
compiler. In PLDI, pages 1–11, 1996.

[24] J. Shin, J. Chame, and M. W. Hall.
Compiler-controlled caching in superword register files
for multimedia extension architectures. In PACT,
2002.

[25] S. P. VanderWiel and D. J. Lilja. Data prefetch
mechanisms. ACM Computing Surveys, 32(2):174–199,
2000.

[26] M. Wolfe. High Performance Compilers for Parallel
Computing. Addison Wesley, 1996.

10

