
H-0166 November 26, 2002
Other (Network Attached Storage)

IBM Research Report

Accessing Application Identification Information
in the Storage Tier

Tsipora Barzilai, Gala Golan
IBM Research Division

Haifa Research Laboratory
Haifa 31905, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Page 1 of 7

Accessing Application Identification Information in the Storage Tier
Disclosure IL8-2002-0055

Version 1.0 – November 26, 2002

Tsipora Barzilai 853101, Gala Golan 413990
IBM Haifa Labs

Abstract

Work Load Management (WLM) is a methodology for dynamic relocation and tuning of computing
resources, so that distributed work can meet end-to-end performance goals. WLM and QoS are policy
based management methodologies. Work (requests, transactions, messages, etc.) is classified into service
classes. Each service class is associated with a set of policies, which determine the allocation of
resources to the work in the class. Classification is based on diverse attributes, some of which are
governed by the application originating the work. In order to classify a unit of work, one has to determine
the values of relevant attributes. However, in Linux 2.4 (and may be other systems) those values may
not be available at any point while processing the work. In particular we refer to the asynchronous
communication between the buffer cache associated with the file system and the I/O device. Most of the
requests on this interface don't carry any information on who application originated the work.

Accessing application identification information from within the I/O device entails new mechanisms and
modifications to the operating system kernel. This document describes a mechanism for accessing
application information from the storage tier in the Linux operating system. The mechanism has been
experimentally implemented in the Linux 2.4
kernel.

1. Problem
Work Load Management (WLM) is a methodology for dynamic relocation and tuning of computing
resources, so that distributed work can meet end-to-end performance goals. Among the resources that can
be monitored are: CPU, memory, network, and i/o. An example of this approach is the IBM eWLM
software[1], which has been implemented on several platforms, including Linux, AIX, and zOS. Quality
of Service (QoS) is a general approach for preferential treatment of traffic flows, which has been applied
to network traffic, using, among others, Differentiated Services (DS)[2].

WLM and QoS are policy based management methodologies. Work (requests, transactions, messages,
etc.) is classified into service classes. A service class is a collection of units of work having similar
performance goals. Each service class is associated with a set of policies, which determine the allocation
of resources to the work in the class.

Classification is based on diverse attributes, some of which are governed by the application originating
the work. Specifically, classification often requires application identification information, such as:
application name, process id, user id, etc. The eWLM management methods are predominantly based on
application identification.

Page 2 of 7

In order to classify a unit of work, one has to determine the values of relevant attributes in the context of
the environment in which the classification is applied. This may not always be a simple task. One
example is classifying i/o work within the storage tier (cache, SCSI, iSCSI, etc). In this environment,
information about the user application that generated the I/O is frequently not available. A decision is
made by the file system, whether to generate a synchronous or asynchronous I/O request. In the latter case
the user application is disconnected from the lower layers of the I/O stack. For example, the SCSI initiator
layer in the kernel usually runs in a dedicated system process, which has no notion of the applications
originating the requests.

Accessing application identification information from within the storage tier entails new mechanisms and
modifications to the operating system kernel. This document describes a mechanism for accessing
application information from the storage tier in the Linux operating system. The mechanism has been
experimentally implemented in the Linux 2.4 kernel.

2. Solution
When a process requests data from a file, the file system is responsible for locating that data on the
device. READ Data that is in the local buffer cache and up-to-date will be returned immediately.
Otherwise, I/O is needed, and an I/O request is passed through the storage tier to the device queue for the
actual I/O to take place.

In case of accessing a SCSI disk, the SCSI command is generated by the device driver only after the file
system has placed the request. At this stage the file system data structures (which hold the information
about the process, user and application) are not always available. A few changes enable us to ensure
access to this information on every I/O request generated by the file system.

The changes described in the sequel have been implemented as a prototype in the Linux 2.4. kernel.

2.1. Accessing the Buffer Header
In some cases (mainly synchronous write operations), the application requesting the I/O would like to
wait for the operation to complete before continuing. For this to happen, the buffer header is added to the
request wait-queue, and the process state is changed from TASK_RUNNING to
TASK_UNINTERRUPTIBLE. When the I/O completes and the device driver has been interrupted, a
special completion function will wake up the process, and the application will continue running.

The SCSI command structure holds a pointer to the I/O request posted by the file system. The request
structure (struct request), contains the queue (request_queue_t) in which the buffer header
is placed, and through this header one can reach the process information. Yet, this queue is non-null only
if the process is indeed waiting for the request to complete.

Using this sequence of pointers, it is possible to access the process id of the application process that
generated the I/O request.

Page 3 of 7

2.2. Making the Buffer Header Available at All Times

The goal is to make the process information available for all I/O requests. Since access is via the request
queue, the obvious solution is to add all buffers to this queue, enabling access to them. However, this
would force all I/O requests in the system to be synchronous, and no process could ever run while
allowing I/O to complete in the background.

A better solution is to add the buffers to the queue without changing the process state, thus making the
information accessible without forcing a delay in the application's normal run. In addition, it is necessary
to change the request completion function, so that no running processes will be awakened.

2.3. Implementation Issues

2.3.1. Scope of the Changes
The changes are done in generic functions, which are used by various file systems, and during boot as
well. The purpose is to make the changes flexible, so they can be used for selective mount points. It was
decided to activate the changes only on explicit demand. This is easily done using a mount option. A new
option, called pid, was added to the mount command. The option results in adding a flag to the super
block of the file system. The setting of this flag will trigger the activation of the new mechanisms.

2.3.2. Structure of the Queue
Theoretically, more that one buffer can wait in the same queue, so it must be ensured that the correct
buffer is deleted from the queue without awakening its process. Since there is no reserved field in which
to save a pointer to the header, one has to rely on two Linux implementation facts for correctness.

1. Before posting a request for a buffer, the file system makes sure there are no requests pending for
that buffer. This means that the buffer will not be waiting on any other queue when it is added to
our queue.

2. The queue is implemented as a linked list. The head of the list is in the request structure, and new
buffers are always added to the beginning of the list. Since the buffer is the first one to be added to
the list, it will be the last one on it when the completion function is called. One can simply remove the
last buffer from the queue before letting the original function work on the queue. In practice, no other
buffer will be added to the queue because of item 1, so the buffer is the only one on the list.

References
[1] V. Chase, eWLM: Enterprise Workload Management, IBM Think Research, March 2002.
http://www.research.ibm.com/thinkresearch/pages/2002/20020529_ewlm.shtml
[2] Blake, S., et al., An Architecture for Differentiated Services, Network Working Group RFC 2475,
December 1988.

Page 4 of 7

Appendix A. References to the Code

1. Accessing the process ID through the SCSI command structure.

 scsi_command* sc;
 struct list_head* lh ;
 wait_queue_t* wqp ;
 int pid ;

...

 if ((sc->request).bh }(
 lh = ((((sc->request).bh)->b_wait).task_list).next ;
 wqp = list_entry(lh, wait_queue_t, task_list ;(
 if (wqp(
 if (wqp->task)
 pid = wqp->task->pid ;
 {

2. Changes in fs/buffer.c:
There are three functions in which the change had to be made.

__block_write_full_page()
block_read_full_page()
brw_page()

� Assigning the new completion function:

if (test_opt(inode->i_sb,PID))
 bh->b_end_io = end_buffer_io_async_pid;
else
 bh->b_end_io = end_buffer_io_async;

� Adding the buffer to the queue:

if (test_opt(inode->i_sb,PID((
{

wait = kmalloc(sizeof(wait_queue_t), GFP_KERNEL ;(
 wait->task=current;
 (wait->task_list).prev = NULL ;
 (wait->task_list).next = NULL ;
 add_wait_queue(&bh->b_wait, wait);
{

� Creating a new (modified) completion function:

lh = (bh->b_wait).task_list.prev ;
 wqp = list_entry(lh, wait_queue_t, task_list) ;

remove_wait_queue(&bh->b_wait, wqp);
kfree(wqp);

Page 5 of 7

Appendix B. Relevant Linux Data Structures and Macros

Functions and macros for locking of the buffer header:

fs/buffer.c:

void __wait_on_buffer(struct buffer_head * bh)
}

struct task_struct *tsk = current;
DECLARE_WAITQUEUE(wait, tsk);

atomic_inc(&bh->b_count);
add_wait_queue(&bh->b_wait, &wait);
do {

run_task_queue(&tq_disk);
set_task_state(tsk, TASK_UNINTERRUPTIBLE);
if (!buffer_locked(b))

break;
Schedule();

}while (buffer_locked(bh));
tsk->state = TASK_RUNNING;
remove_wait_queue(&bh->b_wait, &wait);
atomic_dec(&bh->b_count);

}

lock.h:

extern inline void wait_on_buffer(struct buffer_head * bh)
{

 if (test_bit(BH_Lock, &bh->b_state))
 __wait_on_buffer(bh);

}

extern inline void lock_buffer(struct buffer_head * bh)
{

 while (test_and_set_bit(BH_Lock, &bh->b_state))
 __wait_on_buffer(bh);

}

extern inline void unlock_buffer(struct buffer_head *bh)
{

 clear_bit(BH_Lock, &bh->b_state);
 smp_mb__after_clear_bit();
 if (waitqueue_active(&bh->b_wait))
 wake_up(&bh->b_wait);

}

Page 6 of 7

Data structures:

include/linux/fs.h:
struct buffer_head }
...

char * b_data; /* pointer to data block */
struct page *b_page; /* the page this bh is mapped to */
void (*b_end_io)(struct buffer_head *bh, int uptodate); /* I/O

completion */
...

wait_queue_head_t b_wait;
struct inode * b_inode;
struct list_head b_inode_buffers; /* doubly linked list of

inode dirty buffers */
;{

drivers/scsi/scsi.h:
struct scsi_cmnd {

 struct Scsi_Host *host;
 unsigned short state;
 unsigned short owner;
 Scsi_Device *device;

...
 unsigned int target;
 unsigned int lun;

...
 /* These elements define the operation we are about to perform*/
 unsigned char cmnd[MAX_COMMAND_SIZE];

...
 struct request request; /* A copy of the command we are
 working on */

...
};

include/linux/blkdev.h:
struct request}
...
 struct buffer_head * bh;
 struct buffer_head * bhtail;
 request_queue_t *q;
};

include/linux/sched.h:
struct task_struct {

 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
...

 pid_t pid;
...
/* process credentials */

 uid_t uid,euid,suid,fsuid;
 gid_t gid,egid,sgid,fsgid;
 int ngroups;
 gid_t groups[NGROUPS];
 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
 int keep_capabilities:1;
 struct user_struct *user;

Page 7 of 7

/* limits */
 struct rlimit rlim[RLIM_NLIMITS];
 unsigned short used_math;
 char comm[16];

...
};

include/linux/ext2_fs_sb.h:
struct ext2_sb_info {

 ...
 unsigned long s_mount_opt;
 ...

};

List and queue handling:

include/linux/list.h:
struct list_head {

 struct list_head *next, *prev;
};

#define LIST_HEAD_INIT(name) { &(name), &(name) }
...
/**
 * list_entry - get the struct for this entry
 * @ptr: the &struct list_head pointer.
 * @type: the type of the struct this is embedded in.
 * @member: the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member) \

 ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))

include/linux/wait.h:
struct __wait_queue {

 unsigned int flags;
#define WQ_FLAG_EXCLUSIVE 0x01

 struct task_struct * task;
 struct list_head task_list;

};
typedef struct __wait_queue wait_queue_t;

struct __wait_queue_head {
 wq_lock_t lock;
 struct list_head task_list;

};
typedef struct __wait_queue_head wait_queue_head_t;
static inline void __add_wait_queue_tail(wait_queue_head_t *head,

wait_queue_t *new)
{

 list_add_tail(&new->task_list, &head->task_list);
}

static inline void __remove_wait_queue(wait_queue_head_t *head,

 wait_queue_t *old)
{

 list_del(&old->task_list);
}

