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Parallel Copying Garbage Collection

using Delayed Allocation

Erez Petrank∗ Elliot K. Kolodner†

Abstract

We present a new approach to parallel copying garbage collection
on symmetric multiprocessor (SMP) machines appropriate for Java and
other object-oriented languages. Parallel, in this setting, means that
the collector runs in several parallel threads.

Our collector is based on a new idea called delayed allocation, which
completely eliminates the fragmentation problem of previous parallel
copying collectors while still keeping low synchronization, high effi-
ciency, and simplicity of collection. In addition to this main idea, we
also discuss several other ideas such as improving termination detec-
tion, balancing the distribution of work, and dealing with contention
during work distribution.

Keywords: Language design and implementation, Parallel garbage collec-
tion, Memory management.

1 Introduction

Java is an important new technology, especially as the language of internet
programming. This popularity is attributed to Java being a simple, object
oriented, secure, portable, and platform independent language. High perfor-
mance is a crucial property of any Java Virtual Machine (JVM), and since
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Java provides automatic memory management and garbage collection, one
of the first candidates for performance improvements is to incorporate an
efficient allocator and garbage collector into the runtime.

Initially, Java was introduced as a technology for client machines on
the desktop. Recently, it has also gained popularity for server machines,
mainly because of its platform independence. Today’s characteristic server
platforms employ symmetric multiprocessors in order to increase their com-
puting power. The use of multiprocessors is also increasing for desktop
machines. Thus, taking full advantage of the multiprocessor is essential for
good Java performance on these platforms.

Many garbage collection algorithms, including advanced algorithms first
designed for uniprocessors, do not take advantage of a multiprocessor. In
these algorithms, all application threads are stopped while a single thread
executes the collector on a single processor and all other processors are idle.
Thus, these collectors are not appropriate for use on a multiprocessor. A
parallel garbage collector keeps all processors busy doing useful work even
during collection.

In this paper we present a design for a parallel collector. Our parallel
collector is appropriate both for Java and for other object oriented program-
ming languages on a multiprocessor.

Another way to use multiprocessors efficiently is to employ a concurrent
garbage collector. In such a collector, a single garbage collection thread
runs concurrently with the program threads (see for example [2, 21, 22, 7,
6, 9, 8, 17]). Potentially, all processors can be kept busy during collection.
However, as the number of processors and program threads increase, a single
garbage collector thread may not keep up with the allocation demands of
the many program threads (see for example [1, 9]), and the system may end
up being single threaded as it waits for the garbage collector to free space.
The scalability of the system depends on the collector being able to collect
as fast as the application allocates. Thus, a concurrent collector can also
benefit from the parallelization of the collector thread.

1.1 Contribution of this work

Before going on, let us define terminology for the rest of this paper. We
denote by parallel collection a collection which is run while the application
program is stopped and several parallel collectors perform the collection. We
denote by concurrent collection a collection performed by one or more col-
lector threads that run concurrently together with the application threads.
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The main contribution of this work is the design of a parallel garbage
collector appropriate for Java and other object oriented languages on SMP
server machines. We present a parallel version (for SMP machines) of the
well known copying garbage collector introduced in [20, 11, 3]. The ad-
vantages of the copying garbage collection are the fact that the heap is
compacted in each collection, the low complexity of the algorithm which
touches only the live objects (rather than touching all heap as a mark &
sweep algorithm does), and the simplicity of allocation (controlled increase
of a pointer).

Our main new idea is delayed allocation during the parallel collection
(presented in Section 4.2). Using delayed allocation, a collector thread does
not copy an object immediately; rather, it waits until it has a group of ob-
jects, and then allocates memory for all objects in the group at once and
copies those objects. Delayed allocation completely eliminates the fragmen-
tation problem of previous parallel collectors [13, 5, 19, 14, 15]. This method
incurs low synchronization (as low as in previous work), it is simple (even
simpler than some of the previous solutions), and it is as efficient as previous
solutions.

We believe that our basic ideas can also be generalized to parallelize
other copying-based garbage collection algorithms.

In addition to this main contribution, we offer several new ideas for
designing a parallel copying garbage collector. First, we consider termina-
tion detection. An efficient termination detection is tricky and a previous
attempt to describe a termination detection protocol [10] was faulty. We
provide a correct and efficient termination detector for a parallel collector.
We also discuss work distribution: first, how to break the work into small
pieces to be jointly performed by the parallel collector threads, and second,
what machinery should be used to incur low contention on distributing the
pieces of work among the collector threads.

In addition to the aforementioned ideas, we also make several observa-
tions important for implementers of a parallel copying collectors. These
include items such as dealing with modern SMP memory coherence models,
and our list of design goals (in Section 2 below) that should be addressed
when designing such a collector.

1.2 Organization

We start in Section 2 with the design goals. In Section 3 we review the se-
quential copying garbage collection. We start describing this work in Section
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4 with our main idea: the delayed allocation method. A short discussions on
work distribution is provided in 5. We continue with termination detection
in Section 6 and we conclude in Section 7.

2 Design goals

We present the design goals for our parallel collector. The three major goals
are efficiency, scalability and the preservation of the advantages of sequential
copying garbage collection. These major goals are achieved via the following
concrete goals.

1. Load balancing: Load balancing is always a crucial point in the
efficiency of a parallel algorithm. Efficiency suffers if some of the
processors are idle while the other processors perform the work.

2. Scalability: We would like the algorithm to achieve large speedup
on today’s SMP machine, and also to allow scalability to a bigger
number of processors in future SMP’s. One major consideration here
is to avoid contention when accessing shared resources.

3. Compaction: We would like to preserve the major advantage of
the sequential copying collector: the collection produces a compacted
heap.

4. Locality of reference: An important goal in the design is to try and
avoid cache misses as much as possible. A collector that incurs many
cache misses cannot be considered efficient.

5. Avoid synchronization: The parallel threads must synchronize while
distributing the work between them and while accessing mutual re-
sources. However, it is desirable to keep the synchronization points as
few as possible since performing any synchronized operation such as
a compare and swap instruction (even without incurring any conflict)
can be expensive.

6. Simplicity: Finally, we believe that the design should be simple. A
very complicated collector will probably not be used in practice.

Two remarks are in place. First, in many cases, there is a tradeoff between
the various goals. For example, for load balancing we will usually prefer to
cut the jobs to small pieces, but for small contention we would like to let the
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threads work on large jobs before they have to synchronize again. In any
design, we must settle these tradeoffs, and we believe that a good design
leaves as many open parameters as possible so that the algorithm can be
adjusted to any specific local environment.

3 Sequential Copying Garbage Collection

In order to start discussing our ideas for parallel copying collection, let us
review the steps in the sequential copying collector [20, 11, 3].
1. Stop mutator threads;
2. Flip the roles of from-space and to-space;
3. Scan the roots in each mutator thread and also the global roots. For each
object referenced by a root (child of a root):

(a) If this child is not yet copied then
i. Copy child to to-space;
ii. Write a forwarding pointer in (the from-space copy of) the child;

(b) Update the root pointer to point to the new copy of the child in
to-space;
4. Scan to-space: For each child of an object in to-space:

(a) If this child is not yet copied then
i. Copy child to to-space;
ii. Write a forwarding pointer in the child;

(b) Update the pointer in the father object to point to the new replica
of the child in to-space;
5. Reclaim from-space area;
6. Release mutator threads;

4 Parallel copying collection

The basic idea of the sequential algorithm is still used and we concentrate
on extending this algorithm to parallel collection. A naive parallelization
of the sequential algorithm would have each collector thread do part of
the scan. However, this leads to a bottleneck on the to-space allocation
pointer. Working with a single pointer is simple and elegant, but when
several collector threads perform the copies, they will heavily compete on
a single resource causing unacceptable contention. Other problems also
arise. For example, we don’t want several collector threads to copy the
same (popular) object several times, we have to distribute the parallel work
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carefully, etc. We start with the allocation problem and go on to the other
problems in the following sections.

4.1 Previous solutions

Several previous systems tried to prevent contention on the to-space alloca-
tion pointer for each copy of an object. The first solution, used by Halstead
[13] and Crammond [5] was to partition to-space into n equal spaces, where
n is the number of processors, and let each processor allocate in its own
private space. This completely solves the contention on allocation but has a
major drawback (reported by Halstead): the allocation requests by the dif-
ferent processors are not even and thus one processor gets stuck on failing
allocation when other processors have big empty spaces. Halstead suggested
to ameliorate the behavior of the system by letting each collector allocate
a “chunk” of memory and perform allocations inside the chunk privately.
Namely, when a collector needs to copy an object to to-space, then it ac-
tually allocates a big area (a chunk), copies the object in hand, and keeps
copying subsequent objects to this private area until there is no more room
and a new area should be allocated.

This method, adopted by Miller and Epstein [19] following [18, 4] solves
the contention conflict problem for to-space allocations since these alloca-
tions become much less frequent. However, a new problem arises: the frag-
mentation of to-space. Recall that one of the major benefits of a copying
garbage collection is compaction of the heap. With this solution, we do not
compact the heap through the collection.

To solve the fragmentation problem, Imai and Tick [15] suggested let-
ting each processor manage several chunks, each used for a specific size of
allocation. Typical sizes are powers of two, and objects that fall in between
these sizes (such as an object of size 5) are allocated on the chunk that uses
the smallest power of 2 big enough to hold them (e.g., allocate 8 bytes to
keep an object of 5 bytes). The waste of space in their scheme is at most
half, and in practice much less. However, this scheme needs management
of the chunks and it complicates the solution. Also, it does not completely
overcome the fragmentation problem.

Flood et al [12] adopt the chunk allocation solution denoted local allo-
cation buffers. We remark that this kind of allocation has recently become
common. As applications are multithreaded, some synchronization is re-
quired for allocation and using thread local allocation seems to be the best
option. However, as we will claim, when allocating for the collector, more
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flexibility may be assumed as allocations may be delayed.
In what follows, we present a method in which the garbage collection

outputs a heap with no fragmentation at all. Our solution, the delayed
allocation method, is simpler than the Imai and Tick solution, and does not
increase the contention on allocation.

4.2 Delayed allocation

The idea is to differentiate between regular allocation performed by the mu-
tators and the special allocation that the collector needs. When a mutator
allocates, the space must be assigned immediately to avoid delaying the mu-
tator. However, the collector’s allocations may be delayed. In our scheme,
a collector thread does not perform each allocation immediately when the
original algorithm dictates a copy. Instead, the collector thread keeps an
allocation log in which it records which copies should be performed. When-
ever a copy of an object from from-space to to-space is needed, the collector
thread adds a record to the allocation log in which it puts the from-space
address of the object and the to-space (or root) address of the cell pointing
to the object. Also, it updates the accumulated size of all objects mentioned
in the allocation log. This single number is kept at the beginning of the log.1

This accumulated size, i.e., the sum of all objects to be copied, is the
space needed to apply the allocation log. When the accumulated size is
big enough, e.g., a page, the collector actually applies the allocation log: it
allocates the exact space needed for all the objects, and then it copies the
objects.

Note that there is no fragmentation at all since the allocated space in
to-space exactly matches the space needed to copy the objects mentioned in
the log. Also, the frequency of conflicts and synchronized operations does
not increase. Finally , big objects do not require special care, and they fall
naturally into the framework set by delayed allocation.

One may think that delayed allocation has a disadvantage in foiling
locality of reference. For each object we start by looking at its header and
only (somewhat) later we copy it as a whole. So if the header is evacuated
from the cache, we get an additional cache miss. However, fixing reasonable
parameters (similar to previous work), eliminates this problem. If the cache
is big enough to hold all copied objects in a chunk twice (once for from-

1One may choose to keep all sizes of all objects in the allocation records. This is a
good idea if detecting the length of an object requires a few operations, and we do not
want to read this length in the from-space area twice.



8

space and once for to-space) and also the allocation log itself, then we get
no additional cache misses. Setting the chunk size to around 1kb ensures
good behavior on most processors available today. In any case, one must
tune this parameter carefully.

We proceed with the next synchronization issue: the parallel access of
objects in from-space.

4.3 Synchronizing access to from-space

The parallel access to from-space is the second obstacle that has to be prop-
erly managed. It is possible that two collector threads will try to work on
the same from-space object, since they are scanning two different parents
of this object in parallel. We would like to stress that the contention on
from-space handling is of far lower likelihood than the contention on to-
space allocation. For the latter, any two collectors copying any two objects
cause contention on to-space allocation. Whereas only two collectors that
try to handle the very same object at the same time will face contention
on from-space handling. This has indeed been reported as a minor problem
in previous works. Halstead [13] reports less than one conflict per second
(experienced with Concert Multilisp running on eight processors). This is
the reason why we don’t feel there is a need for an advanced mechanism
to handle these contentions. Our mechanism is simple (and standard) and
allows a good distribution of work between the collectors.

The data structure we keep consists of two bits per object, the work bit
and the done bit, and also a separate list called the parents-log. The done bit
indicates that the object was copied to to-space. This bit must also be used
in the sequential version of the algorithm. In some systems, it is possible to
tell whether a forwarding pointer was written in the header of the object,
and in this case, the done bit is not needed. In addition to the done bit (or
the ability to tell whether a forwarding pointer has been written), we need
an additional bit for our parallel version of the algorithm: the work bit.
This bit indicates that the object is now being copied to to-space by some
collector and there is no need to copy it again. At the start of a collection,
the work bit and the done bit are cleared at all objects.

The parents-log contains records of parents whose pointers reference
from-space and should be updated to reference the to-space copies. We
will explain the need for the parents log later. Let us proceed with the
algorithm.

Consider a collector thread that is scanning a pointer that references a
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from-space object. Either the pointer resides in to-space or it is a mutator
root. The collector has to copy the referenced object into to-space if it has
not yet been copied, and then update the pointer. The collector reads the
work and done bits in the child. If the done bit is set, then the collector
only needs to update the given pointer according to the forwarding pointer
in the child. Another possibility is that the work bit is not set. In this case,
the collector has to perform the actual copy of the child into to-space. To do
this, the collector uses a synchronized operation (such as compare and swap)
to set the work bit. We begin with describing the case that this operation
succeeded and the collector is now responsible for copying the object. We
will deal later (in Subsection 4.3.1 below) with the two similar cases that
remain: The case that the collector failed to set the work bit (i.e., another
processor won and is doing the copy) and the case that upon reading the
bits of the child object, the collector found that the work bit was set but
the done bit was not set.

So suppose the collector did set the work bit of the object. It then checks
the size of the object and adds a record to the allocation log containing the
location of the pointer and the address of the from-space object. Also,
the collector adds the object length to the accumulated size of the objects
registered in the allocation log and checks if it is time to do the actual
allocation, i.e., if the total size of objects in the allocation log has grown big
enough. If it is, the collector actually allocates the needed space and applies
the records in the allocation log.2 Applying a record means: Copying the
relevant object, setting the done-bit in the from-space copy, clearing the
work-bit and done-bit in the to-space copy, and updating the parent pointer
to reference the new copy in to-space.

4.3.1 The parents log

We now return to the case that the collector has a pointer to update, but
the pointed object is being handled by another collector thread. One cannot
let the collector wait till the other collector finishes the update of the child,
since this option is not efficient and could lead to a deadlock. Instead, we
use a global structure called the parents log in which the collector writes a
request to later update the pointer. A record in the log contains the address
of the pointer which should be updated and the address of the child in from-
space. The log is global (rather than being associated with an object), and

2We remark that locality considerations dictate that the log should be applied from
least recently written record and back to the beginning.
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the collector threads apply the parents log when they cannot find anymore
objects to scan (usually, towards the end of the collection).

Synchronization to the parents log can be made negligible using buffer-
ing. Instead of updating the parents log each time a problematic pointer is
traversed, the collector stores the parents-log-record in a local private buffer.
When several records have been accumulated, it adds the buffer to the par-
ents log in a synchronized manner. Thus, the parents-log becomes a list of
buffers, each of which, contains actual records of the parents log. Later, a
collector applies the records in the log by removing a full buffer from the log
and applying the records in the buffer. Synchronization is minimal since it
occurs only when buffers are added or removed from the log. The size of the
buffers can be set as a parameter, tuned by the behavior of the applications.

4.4 Heap management for the application

Garbage collection is tightly coupled with the heap manager. Note that our
method for to-space allocations during garbage collection is inappropriate for
managing the heap allocation by the mutators. Mutator allocations cannot
be delayed without delaying the mutator. Thus, we adopt Halstead’s idea
of memory-chunks (or thread local allocation) for application allocation.

5 Work distribution

Load balancing is one of the more important issues in making parallel im-
plementations run faster. Letting one processor do the work while other
processors are idle does not fully utilize a multiprocessor machine. Imai and
Tick [15] were the first to take explicit care for balancing the load of a par-
allel collector, and Endo et. al. [10] provided an enlightening measurements
showing the strong influence of load balancing on efficiency3. Flood et al
[12] have adopted the queue stealing method of [10] for load balancing. We
believe the methods discussed in these two works are good and should be
adopted. The idea is that list of tasks are kept locally and may be stolen by
other collector threads.

3Endo et. al. implemented a mark & sweep algorithm. In a mark and sweep algorithm
the collector marks all live objects, and later scans the whole heap and reclaims (sweeps)
unmarked objects. Note that although this is not a copying algorithm, this algorithm also
scans all live objects, and thus has similar behavior. See [16] for a detailed description of
mark & sweep algorithms.
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6 Terminating the collection

When do the collectors know that the collection has terminated? Termina-
tion occurs when all the heap has been scanned, all live objects have been
copied and all pointers have been updated to point into the to-space area.
In practice, this means that the collectors finish all jobs in the job lists, and
finish applying all records in the parents log.

A collector can check that the job lists are empty and that the parents log
is empty, but it must also check that all the other collector threads are idle
and not producing more work to be done. Furthermore, the check must be
atomic since another collector thread may write a new entry to the job lists,
and later become idle. The issue of termination detection is error prone. In
fact, a previous solution ([10], Section 4.2 there), for detecting termination
in a parallel mark & sweep collector, has a flaw which we shortly describe
in Subsection 6.3 below.

We present a modification to the previously suggested termination detec-
tion [10]. For simplicity of presentation, we describe the algorithm assuming
strong memory coherency and then (in Section 6.2 below) we discuss how
to fix it for weak coherency.

The data structure we use consists of

1. One global flag called the detection flag initially cleared,

2. A global word called the detector-id initially set to 0,

3. A flag for each collector thread called the idle bit initially cleared,

4. and one global flag called the global termination flag initially cleared.

The detector-id should be big enough to contain any collector thread identity
and one additional value that cannot be an identity (we denote this value
by 0).

To support termination detection the collectors maintain their idle bit
as follows. Whenever the thread is not working, its idle bit is set. In
particular, a thread sets its idle bit when it finishes scanning its own areas,
and has to look for a new area to scan in a tasks list. It then scans the
lists and the parents log to look for a job. Once it detects a job candidate,
it clears the idle bit and then it “competes” on the job by performing a
synchronized operation (e.g., compare and swap) trying to remove the job
from its list (tasks list or parents log). If the collector fails to obtain the
job, it sets the idle bit again and continues the search. Finally, to support
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the termination detection, the collector threads also perform the following
operation: whenever a collector thread adds a record (or buffer) to the tasks
list or to the parents log then before the add operation, it sets the detection
flag. Intuitively, the detection flag is set to indicate that there is activity in
the system and termination has not been reached yet.

A collector starts termination detection if the job market is empty. To
check termination, the thread checks the global detector id. If it is not set
(i.e., equals 0), the thread competes (compare and swap) on writing its id
to the detector id. If it succeeds, it clears the detection flag. It then goes
over all lists to verify that they are empty (tasks lists and parents log) and
goes over all other threads to check that they are idle. Next, it checks that
the detection flag is still cleared, and if all the above hold then it decides
that termination was detected. In this case, it sets the global termination
flag, clears the detector id to 0 and halts.

When a thread wants to check termination and the detector id has an-
other thread id, the thread waits until the detector id is reset to zero. When
it is, the collector thread checks the global termination flag. If the flag is
set, the thread halts. Otherwise, it competes on the detector id to start its
own termination detection.

6.1 A few words on correctness

Let us say a few words on why this termination detection is correct. Note
the course of detection. The detector thread starts by verifying that all
job lists are empty and afterwards it verifies that all collector threads are
idle. Clearly, if the collection indeed terminated then a detecting thread
will detect it: collector threads cannot find jobs so they will all remain
idle, and the lists of jobs will remain empty. Thus, any detector will detect
termination and halt.

It remains to show that no thread will ever halt if the collection is not
yet over. A property of this algorithm is that if the collection is not yet over,
then at any point in time there must be some non-idle collector thread or
some job hanging on some list. The problem is threads check termination in
a non-atomic manner. Suppose that the collection is not done yet, and let
us check if the collector can erroneously decide to terminate. If the collector
finds any non-empty job list or any non-idle collector thread, then it does
not terminate. We will argue that if the collection is not over when the
detector thread finishes the test and the detection flag is not raised, then it
is not possible that the detector will find all lists empty and all idle bits set.
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To show this claim we stress again the order of the checks. The emptiness
of the lists is checked before the idleness of the collectors is checked. Consider
the time between these two checks. If at that time one of the lists is not
empty then we are done: this list was empty when the detector thread
checked it and now it is not. Therefore, an action of adding to the lists was
taken, and the detection flag must be also set and the detection will fail. So
when the detector thread starts to check the idle bits we may assume that
all lists are empty. If during the check of the idle bits a job is added to the
lists by any of the collector threads then again the detection flag is set and
the detection fails. So we may also assume that while the detector checks
the idle bits of all collector threads the job lists remain empty.

Now, if the lists are empty and remain empty, then no collector thread
can clear its idle bit: a collector clears its idle bit only when attempting to
get a new job from the job lists. So each collector may either be idle now or
become idle. But no collector can stop being idle and become active. But
we also assumed that the collection is not over, and since all job lists are
empty, then there must be a collector thread that is not idle throughout the
detection. this collector will be noted by the detector thread, which will not
detect termination.

6.2 The memory coherence model

Let us say a few words on the behavior of the detection algorithm on modern
multiprocessors, e.g., Power-PC, Sparc, Alpha, and Pentium. these architec-
tures typically do not provide strong memory coherency. Namely, the order
of updates executed by Processor P1 is not necessarily the order viewed
by Processor P2. Thus, the solution outlined above does not work without
modification. For example, think of a thread that raises the detection flag,
adds a job (an area to scan) to the task list, and later becomes idle. It is
possible that although the setting of the idle bit of the thread is visible to
other processors, the setting of the detection flag is not yet visible, making
detectors on other processors erroneously terminate.

Thus, in a multiprocessor environment with a weak memory coherence
model, a modification is needed in the algorithm. On all such multiproces-
sors, there is a synchronization instruction (such as sync on the Power-PC,
membar on SPARC, and wbinvd on the Pentium.) These instructions typi-
cally provide the following guarantee: all updates in the instruction stream
before the execution of the sync operation, will appear in the view of all
processors before all updates that appear after the execution of the sync op-
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eration. Such an operation is expensive (as all synchronization operations
are).

Returning to our termination detector, note that we have to take care of
the following course of events: A collector sets the detection flag, it puts a
job in some list, and may later become idle. We make the collector perform
a sync operation after setting the detection flag and just before putting a
job in the list. This makes sure that any thread that detects termination
may find a collector thread idle only after his view contains the setting of
the detection flag performed by that collector.

6.3 A flaw in a previous termination detection protocol [10]

A previous termination detection protocol [10] relies only on a detection flag,
without the detector id. We argue here that this detection is not correct. In
their scheme, a detecting thread (or process) clears the detection flag, and
starts checking for idleness of the system. Any activity in the system implies
setting the flag. After the detector observes no activity in the system, the
thread verifies that the detection flag was not set and then halts.

The problem is that even if there is an activity in the system which
causes the flag to be set, at a later time, another collector thread may start
detecting termination and clear the flag just before the first detector looks at
the flag again. Thus, the second detector misleads the first detector to think
that the flag was not set throughout the detection, and the first collector
terminates erroneously.

7 Conclusions

We introduced a design for a parallel copying garbage collector, which com-
pletely eliminates fragmentation, and is nevertheless efficient, low on syn-
chronization, and simple. Our collector distributes the work with low syn-
chronization overhead and has an efficient termination detection mechanism.
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