
H-0209 November 23, 2003
Computer Science

IBM Research Report

Low-Penalty Codes for Storage Systems

Ami Tavory, Vladimir Dreizin, Shmuel Gal, Meir Feder
IBM Research Division

Haifa Research Laboratory
Haifa 31905, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Low-Penalty Codes for Storage Systems
Ami Tavory, Vladimir Dreizin, Shmuel Gal, and Meir Feder

IBM’s Haifa Research Labs

Abstract—Networked storage-systems and communication
systems typically use codes to protect data from failures. As
reliability settings in these two types of systems are differ-
ent, codes developed for storage systems can out-perform
communication codes applied to storage systems. In this
work we show such codes, as well as their applications.

I. Introduction

To combat device failures, storage systems typically par-
tition data into groups, and protect each data group by
some form of an ECC (error-correcting code), e.g., RAID
(redundant array of independent disks) [1]. Coding theory
has been extensively studied in the context of communica-
tions, where the important considerations are rate, error-
correction capabilities, and computational complexity.

Coding theory in the context of storage systems, might
also have other considerations:
• Recovery penalty and update penalty – When bits are up-
dated, or when they need be recovered, other bits need be
accessed. In most communication-based codes, the number
of accessed bits is proportional to the group size and not to
the actual number of errors. In the setting of storage sys-
tems, this influences the number of devices actively engaged
in reliability-related operations. When communication-
based codes are used for high-performance storage-systems,
small group-sizes are therefore typically used. This, how-
ever, can be shown to lead to a decrease in the MTTDL
(mean time to data loss).
• Importance of block-error probability – In many com-
munication settings, the guarantee that each bit can be
recovered with high probability, is sufficient (i.e., a low bit
error-probability guarantee). Parts of a corrupted message,
which the code does not recover, can be retransmitted. In
most storage applications, the guarantee should be that,
with high probability, all bits can be recovered (i.e., a low
block error-probability guarantee). Bits from a data group
that have been lost due to a device failure, and cannot be
corrected by the code, are irrevocably lost.
• Dynamic data-group location – In communication set-
tings, there is little question on data-group location, as
once a group is encoded, it is simply transmitted. In stor-
age systems, the location of data groups among devices is
dynamic, as data can be corrected and migrated from failed
devices to replacement devices. This blurs the distinction
between coding theory and algorithm design.
• Difference in access types – In communication systems,
the types of access to message bits are usually not consid-
ered. In storage systems, the cost of reading or writing a
bit, is typically not the same as that of an RMW (read-
modify-write) operation.

Email:{tavory,dreizin,gals}@il.ibm.com,meir@eng.tau.ac.il

In this work we study LDGM (low-density generation
matrix) codes which are powerful, efficient, low-complexity
codes, having low recovery and update penalties. We show
how these codes can be applied for storage systems in two
settings. We first show a simple application to large groups
of reference data, which are data rarely modified. We then
analyze a random sparing dynamic layout based on these
codes. We then preform new analysis on repetition codes
(i.e., multi-way mirroring), which allows to estimate the
MTTDL of a group mirroring sub-systems (as opposed to
a single mirroring sub-system).

We prove the results discussed in the paper, and show
software-simulations results verifying the analysis.

Related Work. Reliability has been extensively stud-
ied for communication channels, most relevantly the era-
sure channel and the binary symmetric channel [2], [3].
Bounds on channel capacity were found for uniform error-
protection [4] and unequal error-protection [5], [6]. Well-
known code-families for uniform error-protection are Ham-
ming codes [7] and BCH codes [7] with some of their
variants, e.g., Reed-Solomon codes [8]. More recently,
low-complexity codes have been studied [9], in particular,
capacity-achieving codes, e.g., Turbo codes [10], and LDPC
and LDGM codes [11], [12], [13].

Reliability in storage systems was originally studied in
the context of small-capacity systems [14], [15], [1], and
in conjunction with performance improvement via paral-
lelism, e.g., RAID. The schemes were later extended in
some directions. Concatenated codes were studied, e.g.,
two-dimensional codes [16], and new RAID levels [17].
Questions on coding-group placement within devices were
studied, e.g., various distributed striping and sparing tech-
niques [18], [19], [20], [21], [22], [23]. Effects of physical
device-topologies were studied [24]. Storage reliability via
coding was extended in the direction of disaster recovery
as well [25].

The important idea of hierarchical protection of data
based on data activity, was shown in work on HP-
AutoRAID [26], a work to which ours is an extension. Dif-
ferential coding based on data activity was studied in the
context of very large, concrete systems [27], [28].

Later work in storage reliability has considered larger-
capacity systems, and therefore a failure model taking into
account multiple simultaneous errors. Some excellent an-
alytical work can be found in [29], [30], [31]. New work
oriented toward overall system design and implementation
and the conjunction of several system aspects (e.g., secu-
rity, load-balancing, and meta-data location) can be found
in a series of papers on OceanStore [27], [32], [28].

Definitions and Notations. We consider a system

2

composed of n storage devices. Each devices is composed
of c equal-sized blocks, and has a read/write bandwidth
of r blocks per time unit. We model the devices’ failure
laws as being distributed i.i.d. exponentially with mean 1

λ
[1]. The failure of a device corresponds to the erasure of
all data on it. Given a systematic erasure-code composed
of m data bits and α ·m check bits, we define the storage
rate as 1

1+α . Given a component C, its reliability function,
RC (t), is the probability that it will be functioning at time
t [39]. The system MTTDL is the mean time to data loss
in the system.

For any p, we use [p] to denote the set {1, . . . , p}. We
use I (·) to denote the indicator function.

Paper Organization. The remainder of the paper is
organized as follows. In Section II we describe the vari-
ant of LDGM codes we propose for storage systems. In
Section III we discuss a simple application to reference
data. In Section IV we discuss an application to a random-
placement technique. In Section V we analyze multi-way
mirroring.

II. LDGM Codes for Storage-Systems

In this section we discuss a variation of LDGM (low-
density generation-matrix) codes. LDPC (low-density
parity-check) and LDGM codes were extensively studied
in the field of communication [33], [12], [11], [34], [35], due
to their low computational-complexity and nearly-optimal
rate. We propose a variation suitable for storage sys-
tems. The use of LDGM codes for storage was indepen-
dently proposed previously [27], [32], [28], [35], for reasons
of computational-complexity alone, and under the caveat
that they are probabilistic.

Consider two coding alternatives with equal storage
rates. In the first, all bits are encoded as a single group. In
the second, the bits are partitioned into groups, and each
group is coded. By the law of large numbers, it is clear
that the former alternative is superior in terms of loss prob-
ability to the latter (whose loss probability approaches 1,
as the number of groups grows). The former alternative
might have other drawbacks. Reed-Solomon coding [7], for
example, would necessitate accessing nearly all bits for the
recovery of nearly any failure configuration. We are inter-
ested in codes for large data-groups which have a recovery
penalty determined by the number of errors which took
place, rather than being always proportional to the group
size.

The complementary question, of bounded update
penalty (defined similarly), was previously addressed in an
excellent paper [31], where an inverse relationship between
recovery locality and update locality was also shown.

This section is organized as follows. In Subsection II-A
we give the relevant definitions and notations of LDGM
codes. We next show two codes with low block error-
probability, good recovery locality, and low computational-
complexity. In Subsection II-B we show the first code,
which has a sub-optimal storage rate. Using this code,

we show in Subsection II-C a code with an asymptotically-
optimal storage rate, but higher update penalty. In Sub-
section II-D we show simulation results.

A. Definitions and Notations

In this subsection we give the relevant definitions of
LDGM codes. We consider a recursive LDGM code C com-
posed of p levels, C(1), . . . , C(p), each of which can be un-
augmented or augmented. In Sub-subsection II-A.1 we give
the definitions for a single level. In Sub-subsection II-A.2
we give the definitions for the recursive code.

A.1 A single level

A un-augmented level of an LDGM code is described by
a Tanner-graph, which is a bipartite graph

G = (V,E) = (L
·⋃

R,E). (1)

Let m = |L|. Each node in L represents a data bit; each
node in R represents a parity bit. The value of any node
v is denoted by value (v). An example of such a graph is
shown in Figure 1. For any parity node vr ∈ R, its left-
neighbor set,

←−
V (vr) ⊆ L, is the set

←−
V (vr) =

{
v` ∈ L | (v`, vr) ∈ E

}
. (2)

For any data node v` ∈ L, its right-neighbor set,
−→
V

(
v`

)
, is

defined similarly. The parity bit corresponding to vr is set
to be the XOR (exclusive or) of the data bits corresponding
to the nodes in

←−
V (vr), i.e.,

value (vr) =
⊕

v`∈←−V (vr)

value
(
v`

)
. (3)

The edges in E thus represent parity constraints. The
graph is sparse, i.e., |E| = O (|L|) = O (|R|).

The average left-node and right-node degrees are

a` =

∑
v`∈L

∣∣∣−→V
(
v`

)∣∣∣
|L| , (4)

ar =

∑
vr∈R

∣∣∣←−V (vr)
∣∣∣

|R| ,

respectively. The fractions of edges whose left and right
node-degree is i, are

λi =

∣∣∣
{

e = (v`, vr) ∈ E |
∣∣∣−→V

(
v`

)∣∣∣ = i
}∣∣∣

|E| , (5)

ρi =

∣∣∣
{

e = (v`, vr) ∈ E |
∣∣∣←−V (vr)

∣∣∣ = i
}∣∣∣

|E| ,

respectively. These degrees are usually put into the form
of generating functions

λ(x) =
∞∑

i=1

λix
i−1, (6)

ρ(x) =
∞∑

i=1

ρix
i−1.

3

Partiy

nodes

Data

nodes

Fig. 1. A Tanner graph.

Note that λ(x) and ρ(x) completely define the un-
augmented level.

Assume that all nodes in R are valid, and that some
nodes in L have failed. The recovery process is iterative.
In each step, a node vr ∈ R is chosen s.t. a single node
v` ∈ ←−V (vr) is failed, and the value of v` is then corrected
using (3). Of course, the recovery process terminates pre-
maturely if such a node vr cannot be found. We denote by
Pblock (L) the block error-probability, which is the proba-
bility that the recovery process terminates while some bits
in L have not been recovered. We denote by Pbit (L,α)
the α-bit error probability, which is the probability that
the recovery process terminates while a fraction of at least
α bits in L has not been recovered.

Check below whether decreases e-m or o of 1

Check - before omega or within omega

We will use the following theorem from [11].
Theorem 1: Assume a fraction of δ nodes from L origi-

nally fail.
1. In the family of codes for which

∀x∈(0,δ]δ · λ(1− ρ(1− x)) < x, (7)

a fraction of 1− o (1) of the codes have

∀α<1Pbit (L,α) = o
(
e−αm

)
. (8)

2. In the family of codes for which (7) holds and

λ1 = λ2 = 0, (9)

Data

nodes Recursive Layers

Fig. 2. A recursive LDGM encoding.

a fraction of 1− o (1) of the codes have

Pblock (L) = o
(
e−Ω(m)

)
. (10)

As seen in Theorem 1, a code for which (9) does not
hold, does not guarantee the recovery of all nodes. On the
other hand, it was shown in [11] that if (9) holds, then the
storage rate is suboptimal. For this reason, an augmented
level is commonly used. In an augmented level, the nodes
in L are protected by both an LDGM code for which (9)
does not hold, and by an expander-based code [36]. The
LDGM code corrects all but a negligible number of failed
nodes. The expander-based code corrects the rest.

A.2 The recursive code

The recovery process of C(i), described in Sub-subsection
II-A.1, requires that all the nodes in R be valid. Since these
nodes can fail, a recursive code is used. This is shown in
Figure 2. In the recursive code, each level’s R is taken
to be the next level’s L. A sequence of p levels is built,
C(1), . . . , C(p). The last level, C(p), is composed of a non-
recursive code (e.g., Reed-Solomon).

Note that in general, it is not required that the C(i) be
of the same type. Typically, however, a recursive LDGM
code is composed of same-type levels (except for the last).
Let the storage-rate of a level be denoted by β, and let
β′ = 1−β

β . Let the number of original data bits be n. Level
i is then an LDGM code with β′i−1n left nodes and β′in
right nodes. Assume that p is set s.t. β′p−1n ≈ √

n. It
follows that the total number of redundant nodes is

n
∑

i∈[p]

β′i ≈ (11)

(
n− β′

√
n
) β′

1− β′
=

(
n− 1− β

β

√
n

)
1− β

2β − 1
.

4

B. A Truncated Right-Regular Code

m or n as the number of data bits

In this subsection we define a right-regular code which is
a variation of [13], and analyze its performance. The code
is truncated, in its power series λ(x) having a 0 coefficient
of the x term. This code has low block error-probability,
good recovery locality, and low computational-complexity.
We use this code in Subsection II-C as well.

Definition 1: Let Ĉ(i) be an un-augmented level of an
LDGM code, defined by the generating functions:

λ̂(x) =
∑q̂−1

k=2

(
α̂
k

)
(−1)k+1xk

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

, (12)

ρ̂(x) = xâ−1,

where â ≥ 2 and q̂ ≥ 3, are arbitrary integers, and α̂ =
1/(â− 1). Let the average left-node degree be denoted by
â` (the average right-node degree is obviously â).

Note that λ̂(x) is a normalized sum of xi terms of the
Taylor expansion of 1− (1− x)α̂, for 2 ≤ i ≤ q̂.

The main result in this subsection is the following.
Theorem 2: Let

δ̂max =
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

1− α̂
. (13)

Then we have the following attributes of Ĉ(i):
1. Let δ denote the fraction of errors in L.

δ ≤ δ̂max ⇒ Pblock (L) = o
(
e−Ω(m)

)
. (14)

2. • If the number of failed data-nodes is |Lf | and the
number of accessed data-nodes is |La|, then

|La| ≤ â |Lf | . (15)

• Let Ĉ be a recursive LDGM code composed of Ĉ(i)s.
Then the expected number of accesses per single (data or
parity) failed-node recovery approaches â + 1.
3. • If the number of modified data-nodes is |Lu| ¿ |L|
and the number of accessed parity-nodes is |Ra|, then

|Ra| ≈ |R| − |R|
(

1− â` |Lu|
â |R|

)â

(16)

• Let Ĉ be a recursive LDGM code composed of Ĉ(i)s,
protecting n original data-bits. Let a single data-node be
modified. Then the ratio between the expected number of
accessed nodes and total number of redundant nodes is

o

(
1

nΩ(1)

)
, (17)

where n is the number of original data-bits.

4. The storage rate of the code is greater than

1−
2

(
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

)

1− 2
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

. (18)

5. The ratio between the fraction of errors corrected by
Ĉ(i), and the fraction corrected by an optimal code of the
storage rate in (18), is

1
2
− 1

qα̂+1(1− α̂)
. (19)

6. The computational complexity of encoding and decod-
ing is linear.

For much of the proof, we modify proofs from [11] and
[13].

We first prove item 1 of Theorem 2,
Proof: To apply item 2 of Theorem 1, we first must

show that the degree distributions are valid ones. To do
so, it is sufficient to show that the coefficients of λ̂(x) are
positive, and that λ̂(1) = ρ̂(1) = 1.

To show the positivity of the coefficients, note that
(

α̂

k

)
=

α̂(α̂− 1) · · · (α̂− k + 1)
k!

= (20)

(−1)k−1 α̂

k

(
1− α̂

k − 1

)
· · ·

(
1− α̂

2

)
(1− α̂).

To show that the sum of the coefficients is 1, note that

λ̂(1) =
∑q̂−1

k=2

(
α̂
k

)
(−1)k+11k

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(a)
= 1, (21)

ρ̂(1) = 1â−1 = 1,

where (a) follows from the fact that, by induction, [11]

q̂−1∑

k=1

(
α̂

k

)
(−1)k+1 = 1− q̂

α̂

(
α̂

q̂

)
(−1)q̂+1. (22)

We now show that the condition of item 2 in Theorem 1
holds.

Expanding λ̂(1− ρ̂(1− x)), we have

λ̂(1− ρ̂(1− x))
(a)
= (23)

∑q̂−1
k=2

(
α̂
k

)
(−1)k+1(1− ρ̂(1− x))k

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(b)

≤
∑∞

k=2

(
α̂
k

)
(−1)k+1 (1− ρ̂(1− x))k

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(c)
=

1− (1− (1− ρ̂(1− x)))α̂ − α̂ (1− ρ̂(1− x))
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(d)
=

1− (
1− (

1− (1− x)â−1
))α̂ − α̂

(
1− (1− x)â−1

)

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(e)
=

x− α̂ + α̂(1− x)
1
α̂

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

, (24)

5

where in the above, (a) follows from (12), (b) follows from
the fact that by (20), for y ≤ 1,

(
α̂

k

)
(−1)k+1 (1− y)k ≥ 0, (25)

(c) follows from the fact that the Taylor expansion of 1 −
(1− y)α̂ is

1− (1− y)α̂ =
∞∑

k=1

(
α̂

k

)
(−1)k+1yk, (26)

and (d) and (e) follow from (12).

We also note for the above, that it was shown in [13] that

Check here, made serious changes

λ̆(x) =
∑q̂−1

k=1

(
α̂
k

)
(−1)k+1xk

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1

(27)

converges in the relevant range of x, and so

λ̂(x) =
λ̆(x)

(
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1

)
− α̂x

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(28)

converges as well.

Using the above expansion, we now have that for x ∈
(0, δ̂max],

δλ̂(1− ρ̂(1− x))
(a)

≤ (29)

δ
(
x− α̂ + α̂ · (1− x)

1
α̂

)

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(b)

≤

δ (1− α̂) x

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

=

δ

δ̂max

x ≤ x,

where, in the above, (a) follows from (24), and (b) follows
from the fact that

∀0≤x≤1x− α̂ + α̂ · (1− x)
1
α̂ ≤ x(1− α̂). (30)

We now prove item 2 of Theorem 2.
Proof: The first part follows easily from description,

in Sub-subsection II-A.1, of the recovery process. For the
second part, assume that the number of original data-bits
is n. Note that the number of accesses required for a failed
node v is at most

{ √
n , v ∈ Ĉ(p)

â , otherwise
. (31)

Let n′ be the total number of nodes not in Ĉ(p). The
average number of accessed nodes is

ân′ +
√

n · √n

n′ +
√

n
. (32)

Using (11), we get that the average number of accessed
nodes is at most

â +
2β − 1

β
< â + 1, (33)

since 2β−1
β < 1 for 1

2 < β < 1.

We now prove item 3 of Theorem 2.
Proof: To prove the first part, we use the differential-

equation approach from [11]. Some edges emanate from
the Lm ⊂ L modified nodes. Let the number of such edges
be m′; let the edges be e1, . . . em′ .

Assume a process of m′ steps. Let each step take ∆t =
1

m′ time. Let rt denote the average number of un-accessed
parity-nodes at time t. At step i, the node vr

i is accessed,
where vr

i ∈ R is the terminating node of ei. The value
of ri∆t is updated, if necessary. It can be shown that the
difference-equation system for rt is:

rt+∆t − rt = − ârt

â|R| − t
∆t

, (34)

r0 = |R|.
Manipulating and taking ∆t → 0, we get the differential-
equation system:

d rt

d t
= − m′ârt

â|R| − tm′ , (35)

r0 = |R|.
Solving for rt and setting t = 1, we get

r1 = |R|
(

1− m′

â|R|
)â

. (36)

It remains to approximate m′. This random variable is
distributed hyper-geometrically. For |Lm| ¿ |L|, m′ ≈
âlLm.

We now prove the second part. On the average, when
updating a left node, âl right nodes should be updated.
For each level, the maximal number of nodes updated is
not larger than the number of parity nodes in the level. It
follows that for any j ∈ [p], the average number of accessed
nodes is bounded by

j∑

i=0

âl
i+1 +

p̂∑

i=j+1

βi+1n. (37)

Minimizing by j yields that the number of accessed nodes
is

≈ n
log âlβ′

1−β′
(âl) (

âl

âl − 1
+

1− β′

2β′ − 1

)
(38)

−√n
1− β′

2β′ − 1
− âl

âl − 1
.

6

The combination of (11) and (38) shows that the ratio of
the number of accessed nodes to the number of redundant
nodes is

o

(
n
log âlβ′

1−β′
(âl)− 1

)
. (39)

Note that since β′

1−β′ > 1, the power of n in (39) is negative.

We now prove item 4 of Theorem 2.
Proof: By definition, the storage rate of the code is

the ratio between the size of the left-node set and the total
number of nodes.

r =
|L|∣∣∣∣L
·⋃

R

∣∣∣∣
=

1

1 + |R|
|L|

≥ 1− |R|
|L| = (40)

1−
∫ 1

0
ρ̂(x) dx∫ 1

0
λ̂(x) dx

(a)
=

1−
2

(
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

)

1− 2
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

where (a) follows from the fact that

q̂−1∑

k=1

(
α̂

k

)
(−1)k+1

k + 1
=

α̂− (
α̂
q̂

)
(−1)q̂+1

α̂ + 1
, (41)

∫ 1

0

λ̂(x) dx =

α̂

α̂ + 1

1− 2
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

2(1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂)

,

∫ 1

0

ρ̂(x) dx =
α̂

α̂ + 1
.

We now prove item 5 of Theorem 2.
Proof: For any storage rate r, an optimal code could

then correct a fraction of 1 − r errors [7]. The ratio of
correction capabilities is therefore,

δ̂max

1−R
≥ (42)

1− 2
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

2(1− α̂)
(a)
=

1
2
− 1

qα̂+1(1− α̂)
,

where in the above, (a) uses the fact that [13]

∃c∀q̂≥2∀α̂< 1
2

cα̂

q̂α̂+1
≤

(
α̂

q̂

)
(−1)q̂+1 ≤ α̂

q̂α̂+1
. (43)

Item 6 of Theorem 2 is a known property of LDGM
codes. It follows from the sparseness of G.

Data

nodes

Fig. 3. The augmented level-code.

C. An Augmented Right-Regular Code

In this subsection we define an augmented right-regular
code based on [13] and Subsection II-B. This code has
low block error-probability, good recovery locality, and low
computational-complexity. Its storage rate is asymptoti-
cally optimal; its update penalty is higher than the code
from Subsection II-C.

We will require the following code from [13].
Definition 2: Let C̃(i) be an un-augmented level of an

LDGM code, defined by the generating functions:

λ̃(x) =
α̃

∑q̃−1
k=1

(
α̃
k

)
(−1)k+1xk

α̃− q̃
(
α̃
q̃

)
(−1)q̃+1

, (44)

ρ̃(x) = xã−1,

where ã ≥ 2 and q̃ ≥ 2, are arbitrary integers, and α̃ = 1
ã−1 .

We now define a code that combines the previous two.
Definition 3: Let Ći = Ći(ε) be an LDGM level defined

by C̃i, and augmented by Ĉi (from Subsection II-B) coded
at storage rate 2ε

1
2− 1

qα̂+1(1−α̂)

.

A level of this code is shown schematically in Figure 3.
This idea is similar to augmenting an LDGM code by an
Expander-based code [11].

The main result in this subsection is the following.

7

Theorem 3: Let α̃ and q̃ be defined as in Definition 2.
Let

δ́max =
α̃− q̃

(
α̃
q̃

)
(−1)q̃+1

α̃
. (45)

Then we have the following attributes of Ć(i):
1. Let the fraction of errors which occurred be δ.

δ ≤ δ́max ⇒ Pblock (L) = o
(
e−Ω(m)

)
. (46)

2. If the number of failed data-nodes is |Lf | À 1 and the
number of accessed data-nodes is |La|, then

|La| / ã |Lf | . (47)

3. • If the number of modified data-nodes is |Lm| ¿ |L|
and the number of accessed parity-nodes is |Ra|, then

|Ra| / |R|
(

1−
(

1− ã` |Lm|
ã |R|

)ã

+
2ε

1
2 − 1

qα̂+1(1−α̂)

ε

)
(48)

• Let Ć be a recursive LDGM code protecting n original
data-bits, whose each layer is is Ć(i). Let a single data-node
be modified. Then the ratio between expected accessed
parity-nodes and total parity-nodes is

o

(
1

nΩ(1)

)
. (49)

4. The storage rate of the code is greater than
(

1−
α̃− q̃

(
α̃
q̃

)
(−1)q̃+1

α̃− (
α̃
q̃

)
(−1)q̃+1

)
1

1 + 2ε
1
2− 1

qα̂+1(1−α̂)

. (50)

5. The ratio between the fraction of errors corrected by the
code and the fraction corrected by an optimal code of the
same storage rate is

1− 1
qα̃+1

1
1 + 2ε

1
2− 1

qα̂+1(1−α̂)

ε
. (51)

6. The computational complexity of encoding and decod-
ing is linear.

We first prove items 1 of Theorem 3.
Proof: Using Item 1 of Theorem 1, it can be shown

that C̃(i) corrects all but a negligible fraction of errors ε′

s.t. ε′ ¿ ε. Using Item 2 of Theorem 1 and the proof
of Theorem 2, it follows that Ĉ(i) corrects at least an ε
fraction of errors.

Items 2 and 3 of Theorem 3 can be proved as in Theorem
2.

We now prove items 4 and 5 of Theorem 3.

Proof: Let
∣∣∣L̃

∣∣∣ and
∣∣∣R̃

∣∣∣ be the sizes of the data and

parity node-sets in the code C̃(i). The storage rate of Ć(i)

is
∣∣∣L̃

∣∣∣
∣∣∣L̃

∣∣∣ +
∣∣∣R̃

∣∣∣ + 2ε
1
2− 1

qα̂+1(1−α̂)

∣∣∣L̃
∣∣∣

= (52)

∣∣∣L̃
∣∣∣

∣∣∣L̃
∣∣∣ +

∣∣∣R̃
∣∣∣

∣∣∣L̃
∣∣∣ +

∣∣∣R̃
∣∣∣

∣∣∣L̃
∣∣∣ +

∣∣∣R̃
∣∣∣ + 2ε

1
2− 1

qα̂+1(1−α̂)

∣∣∣L̃
∣∣∣

(a)

≥

∣∣∣L̃
∣∣∣

∣∣∣L̃
∣∣∣ +

∣∣∣R̃
∣∣∣

1
1 + 2ε

1
2− 1

qα̂+1(1−α̂)

,

where (a) follows from Definition 3. The proof now follows
by applying bounds from [13] on the storage rate of C̃(i).

Item 6 of Theorem 3 follows as in Theorem 3.

D. Simulation Results

In this subsection we show simulation results for a single-
layer of the truncated right-regular LDGM codes discussed
in Subsection II-B:
• Figure 4 shows the single-layer storage-rate and maximal
fraction of fixable nodes as a function of left and right edge-
degrees (derived in (18) and (13) respectively). As noted,
the rate of this code is sub-optimal, necessitating the use
of the augmented code from Subsection II-C.
• We have performed 500 tests on the block error-
probability. In each test a random code with m = 10000
left nodes, q̂ = 4, â = 4, α̂ = 1

3 , and 8236 right nodes was
first built. Then, 106 iterations were performed. In each
iteration 3900 left nodes were initially set to be corrupted,
and were then attempted to be fixed. The code succeeded
in every single iteration of every single test.
• Figures 5 and 6 show the number of updated nodes as a
function of the fraction of modified left nodes, for the case
q̂ = 4, â = 7, and m = 10004 left nodes. Note that as pre-
dicted, simulation results coincide with the expected value,
given by (16). For small fractions of left nodes being up-
dated, the number of update-IOs can be approximated as
the number of updated left nodes times average left degree
(al).
• Figure 7 shows the number of nodes, accessed by the
recovery procedure, as a function of the fraction of failed
left nodes, for the case q̂ = 4, â = 7, and m = 10004
left nodes. Note that the assumption of a accesses per
each failed node gives the upper bound on the number of
accessed nodes, as shown in (15).

III. Applications to Reference Data

The first simple application of the LDGM code is for pro-
tecting large amounts of reference data (i.e., data which is

8

0

5

10

15

20

0

5

10

15

20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Maximal left degree (q) Right degree (a)

Single−layer storage−rate
Maximal fraction of fixable data nodes

Fig. 4. Rates and error-correction capabilities as a function of edge
degrees.

0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fraction of updated left nodes

N
um

be
r

of
 u

pd
at

e
IO

s

Simulation result
Expected result
Expectation as number of updated left nodes times a

l

Fig. 5. Number of updated nodes as a function of the fraction of
modified left nodes for the case q̂ = 4, â = 7, and m = 10004 left
nodes.

not often updated). In this application, the bounded pro-
portionality of accessed bits per erased bits, comes into ef-
fect. E.g., consider a three-site reference-data system stor-
ing a copy of each datum in two of the three sites. While
this system can survive a disaster obliterating a single site,
or ongoing failures affecting some devices in all three sites,
the MTTDL can be shown to decrease linearly in the num-
ber of devices. Using an LDGM code to protect all devices,
would result in a system with similar performance, but with
MTTDL increasing in the number of devices. Using a clas-
sic Reed-Solomon code to protect all devices, would result
in a system whose devices would be engaged in much of the
time in recovery-related operations.

IV. Applications to Random Sparing

Data which are active (as opposed to reference data),
are not best protected by the method in Section IV; The

0 0.2 0.4 0.6 0.8 1
0.97

0.98

0.99

1

1.01

1.02

1.03

Fraction of updated left nodes

R
at

io
: n

um
be

r
of

 u
pd

at
e

IO
s

by
 s

im
ul

at
io

n/
ex

pe
ct

ed

Fig. 6. Ratio
the number of updated nodes by simulation

the number of updated nodes by (16)
as a func-

tion of the fraction of modified left nodes for the case q̂ = 4, â = 7,
and m = 10004 left nodes.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Fraction of failed left nodes

N
um

be
r

of
 r

ec
ov

er
y

IO
s

Simulation result
Upper bound (number of failed left nodes times a)

Fig. 7. Number of nodes, accessed by the recovery procedure, as a
function of the fraction of failed left nodes, for the case q̂ = 4, â = 7,
and m = 10004 left nodes.

update penalty is too high. Commonly, active data-groups
are distributed in some manner over devices, in an attempt
to parallelize request handling [18], [19], [20], [21], [22], [23].
We consider a random-sparing scheme, apparently similar
to an independent OceanStore solution [27], but differing in
the random location-decision and use of bounded-penalty
codes.

We consider a random-sparing scheme, apparently sim-
ilar to an independent OceanStore solution [27]but differ-
ing in the random location-decision and use of bounded-
penalty codes. Using queuing theory and the concepts of
random-variable negative dependence, we perform approx-
imate analysis on the attributes of this scheme: MTTDL,
coding-group average size and rate, required device mem-
ory, and reliability-related workload.

This section is organized as follows. In Subsection IV-A

9

we describe the scheme. In subsection IV-B we analyze it.
In Subsection IV-C we show simulation results. In Subsec-
tion IV-D we discuss some implications of the analysis.

A. Scheme Description

In this subsection we describe the random sparing
scheme.

Initially, there are n devices in the system. The data is
divided into data groups. For simplicity, we assume the
size of each group is ` blocks, of which `′ can be corrected.
We assume the code used has bounded recovery-locality.
Specifically, we assume that the ratio of accessed blocks
per failed blocks of a group, is at most k. We assume an
average fill-ratio of β, i.e., of the nc blocks in the system,
βnc are taken (and so the number of groups is βnc

`). We
place the restriction that a fraction of at most µ of all
operations can be dedicated to recovery operations.

We divide the operating time into rounds of duration ts,
and epochs, each consisting of s rounds. For simplicity, we
assume that sts = c

µr , i.e., each epoch lasts the time that
would be required to sequentially read a device from start
to end, normalized by µ.

Naturally, a request to a device can be blocked due to
its servicing previous requests. We assume that each de-
vice has a queue of read and write requests, which it ser-
vices subject to its bandwidth and constraint on fraction
of recovery-operations. Memory is required for write re-
quests in the queue, and for read requests which have been
completed but whose contents are still needed. We later
analyze the system-wide amount of such memory.

At some points, the scheme requires writing a (recovered)
group element to a one of the operating devices. The selec-
tion of the operating device is random, but differs from the
standard uniform selection between all operating devices
which are not full [27]. Rather, a uniform selection is made
between all operating devices (full or non-full), which does
not contain a member of the data group. If a full device
is selected, a reassignment takes place; A random element
from the device is chosen to be written someplace else, and
the process continues recursively. We explain the rationale
for this later.

The scheme is composed of two concurrent processes, a
contracting process and an expanding process, which we
describe next.

The contracting process works as follows. In each round,
the system observes the set of devices which have failed in
the round. For each data group, the system identifies the
members that are on failed devices. If these members can-
not be recovered, then data has been lost at this time. Oth-
erwise, the system randomly selects, for each failed mem-
ber, a subset of k devices out of all subsets of k devices
which can recover the element. For each of these devices,
it inserts into its queue a request to read the required el-
ement. If the system has enough elements to recover an
element, it recovers it, randomly selects a device, and in-
serts into its queue a request to write the element (possibly
triggering reassignment).

We term this a contracting process, since it attempts
to maintain the data groups into a continually contracting
group of devices (those which are still operating).

The expanding process works as follows. At the begin-
ning of each epoch, replacement devices are inserted into
the system. The number of replacement devices is deter-
mined s.t. the expected number of operating devices in
the end of the epoch will remain n. In each round, the
system chooses, for each replacement device, βc

`ts
random

data groups which are not represented in the device. For
each such group, it randomly selects a non-replacement de-
vice containing a member of the group, and inserts into its
queue a request to read the required element. When the
element has been read, the replacement devices writes it.

At the end of an epoch, all replacement devices which
have not failed during an epoch, become (new) operating
devices. For each element written to a replacement device
during an epoch, the system modifies its marked location.
It is now marked as being located in the (new) operating
device. Its old location is marked as empty.

We term this a contracting process, since it attempts
to maintain the data groups into a continually expanding
group of devices.

From the above description, it is clear that the number
of operating devices (originally n), and the average fill ra-
tio of each device (originally β), change with time. In an
arbitrary point in an epoch, we denote these sizes by n′

and β′, respectively.

The main result is the following theorem.
Theorem 4: Assume

` À log(n), (53)
c
(
1− β

(
1 + 2λsts + 2(λsts)2

)) À 1, (54)
1
λ

À c

µr
. (55)

For some δ 0, let the storage rate of each coding group
be

≈ 1− (1 + δ)λ
(

ts +
k + 1
µr

)
. (56)

Then the MTTDL of random sparing is
c

sµr

e

− 1

2 βnc
`

e
−λ(ts+ k+1

µr) `δ2
2

. (57)

B. Analysis

Following is the proof-outline of Theorem 4. In Lemma
2 we bound the expectation of the number of full devices in
a round. In Lemma 3 we bound the probability of a failure
in a round, given the effective number of failed devices
in the round. In Lemma 4 we approximate the number
of pending recovery-requests, using Lemma 2. Using the
number of pending requests, we approximate the effective
number of failed devices in a round.

10

The analysis of random sparing is complicated by the fact
that the devices’ and groups’ states are not independent,
e.g., if some data-groups have very many representatives in
some set of devices, then the number of representatives of
other data-groups is probably not very large. This makes
it difficult to apply directly the Chernoff bound. For this
reason, we use in some places in the analysis, the notion of
negative dependence [37].

Definition 4: Let X =
{
x1, . . . , x|X|

}
be an ordered set

of random variables. The elements of X are negatively

dependent if for every disjoint index-sets I
·⋃

J ⊆ [|X|],
and any functions f : R|I| → R and g : R|J| → R that
are both non-increasing or non-decreasing,

E [f (xi, i ∈ I) · g (xj , j ∈ J)] ≤ (58)
E [f (xi, i ∈ I)] ·E [g (xj , j ∈ J)] .

The following lemma contains useful properties of
negatively-associated random variables which we will use.
The statements of the lemma appear in [37], or are slight
variations of them.

Lemma 1: Let X be an ordered set of random variables.
Then
1. If f : R → R is a non-increasing or non-decreasing
function, then the Chernoff bound can be applied to∑

x∈X f (x).
2. If Y is a set of negatively-associated random variables,

and X and Y are independent, then X
·⋃

Y is negatively
dependent.

We first bound the expectation of the number of full de-
vices in a round. This in turn, serves to bind the expected
number of reassignments performed.

Lemma 2: At some round, let the fraction of operating
devices’ blocks be β′. Then, with high probability, the
fraction of full devices is at most

 2

β′
(

1
β′ − 1

)3

c

1
3

. (59)

Proof: Let the number of devices be n′, and define the
vector c, s.t. c[i] denotes the number of elements in device i.
For some δ′ ≤ 1 and β′′ ≤ β′, assume that a subset S ⊆ [n′]
exists, s.t. |S| ≥ δ′n′, and ∀i∈Sc[i] ≥ β′′c. A straightfor-
ward calculation shows that the maximum fraction of full
devices, is at most

δ ≤
β′n′c−δ′n′β′′c

c−β′′c

n′
=

β′ − δ′β′′

1− β′′
. (60)

From (60), to show that δ is small, we can show that

δ′
β′′≈β′≈ 1.

Consider three processes A, B, and C, each inserting
β′n′c blocks into the n′ devices. Each process inserts blocks

in β′n′c
` iterations. In each iteration, process A inserts a

coding group into ` distinct devices. If a full device is en-
countered, reassignment is performed. Process B does the
same for the case c →∞, ad so reassignment are not per-
formed. Process C does the same as B, except that at each
iteration, the ` devices are chosen with replacement.

Define the vector w as the indicator of c[i] containing
less than (1− ε)β′c elements, i.e.,

w[i] = I (c[i] ≤ (1− ε)β′c) . (61)

We would like to show that at the termination of process
A, with high probability, most entries of w are 0. It clearly
suffices to show that at the termination of process B, with
high probability, most entries of w are 0.

At the termination of any of the three processes,

∀i∈[n′]E [c[i]]
(a)
=

∑
i∈[n′] E [c[i]]

n′
(b)
= β′c, (62)

where (a) follows from the symmetry between devices, and
(b) follows from linearity of expectation and the fact that
E

[∑
i∈[n′] c[i]

]
= n′β′c . At the termination of process B,

it follows from the Chernoff bound that for i ∈ [n′],

P (w[i] = 1) ≤ e−
β′cε2

2 . (63)

We cannot directly deduce from the low probability of
the event w[n′] = 1 in (63), the high-probability of a low-
fraction of entries of w being 1. The Chernoff bound does
not apply immediately , as the entries are not independent.
If (63) would result from process C, then condition 2 in
Lemma 1 would hold, and the Chernoff bound would apply.
For process B, however, condition 2 in Lemma 1 does not
hold, as the placements of the ` blocks in each iteration are
not independent. Rather than using Lemma 1 directly, we
show the Chernoff bound applies, by applying the Harris
inequality in a slightly different way than used in [37].

Let c′n = c[n′]. For any t,

E
[
Πi∈[n′]e

t·w[i]
]

= (64)

E
[
et·w[n′] ·Πi∈[n′−1]e

t·w[i]
]

=

E
[
E

[
et·w[n′]Πi∈[n′−1]e

t·w[i]|c′n
]]

(a)
=

E
[
E

[
E

[
et·w[n′]|c′n

]
Πi∈[n′−1]e

t·w[i]|c′n
]]

(b)
=

E
[
E

[
et·w[n′]|c′n

]
E

[
Πi∈[n′−1]e

t·w[i]|c′n
]] (c)

≤

E
[
E

[
et·w[n′]|c′n

]]
·

E
[
E

[
Πi∈[n′−1]e

t·w[i]|c′n
]]

=

E
[
et·w[n′]

]
E

[
Πi∈[n′−1]e

t·w[i]
] (d)

≤

E
[
et·w[n′]

]
Πi∈[n′−1]E

[
et·w[i]

]
≤

Πi∈[n′]E
[
et·w[i]

]
.

11

In the above, (a) and (b) follow from the fact that given c′n,
et·w[n′] is obviously a constant. Inequality (c) follows from
the Harris inequality [38]. Inequality (d) follows from a re-
peated application of the same idea to E

[
Πi∈[n′−1]e

t·w[i]
]
.

By (64), the Chernoff bound can be applied to∑
i∈[n′] w[i]. It follows that for large enough n′, we can

approximate, with high probability 1 −
∑

i∈[n′] w[i]

n′ by the
right side of (63). Inserting into (60), we obtain

β′ −
(
1− e−

β′cε2

2

)
β′(1− ε)

1− β′(1− ε)
(a)≈ (65)

e−
β′cε2

2 + ε
1
β′ − 1

(b)

≤

 2

β′
(

1
β′ − 1

)3

c

1
3

,

where (a) follows from neglecting the second order term

ε · e− β′cε2

2 , and (b) follows from taking ε =
(

2
β′c

) 1
3
.

We next bound the error probability in a round, assum-
ing that all groups failing up to the round’s start have been
recovered.

Lemma 3: At some round, let the number of functioning
devices be n′, and let the effective number of failed device
in the round be n′f . Assume that for some δ, each group
can be recovered if at most

`′ = (1 + δ)n′F
`

n′
(66)

blocks of it are lost.
Then the probability of failure in the round, is

e

− 1

2 βnc
`

e
−

n′
F

`
n′ ·δ

2

2

. (67)

Proof: Let the set of devices failing in the round be
F (i.e., n′f = |F |). Define the vector z whose ith entry
represents the number of elements of the ith group in the
failed devices of the round, i.e., for i ∈ [n′],

z[i] =
∣∣{j | ∃C∈F xi[j] ∈ C

}∣∣ . (68)

It is easy to see that

P (z[i] = x) =

(
`
x

)(
n′−`
n′f−x

)
(

n′
n′f

) . (69)

Since the distribution is hyper-geometric, the z[i] are neg-
atively dependent. From the Chernoff bound,

P
(

z[i] ≥ (1 + δ)n′F
`

n′

)
≤ e−

n′F
`

n′ ·δ
2

2 . (70)

We define a vector w whose ith entry is the indicator of
the group-failure event, i.e.,

w[i] = I

(
z[i] ≥ (1 + δ)n′F

`

n′

)
. (71)

We are interested in the event that w is the all-0 vector,
i.e., no group had many elements in F . Noting that the
elements of w are negatively dependent, and that a group
failed if

∑

i∈ βnc
`

w[i] ≥ 1 = (72)

βnc

`
· e−

n′F
`

n′ ·δ
2

2

1 +

1

βnc
` e−

n′
F

`
n′ ·δ

2

2

− 1

 ,

we have, by the Chernoff bound,

ln

P

∑

j∈[βnc
`]

w[j] ≥ 1

(a)

≤ (73)

−

βnc
` e−

n′F
`

n′ ·δ
2

2

 1

βnc
` e−

n′
F

`
n′ ·δ

2

2

− 1

2

2
(b)≈

− 1

2βnc
` e−

n′
F

`
n′ ·δ

2

2

,

where (a) follows from (72), and (b) follows from (53) and
the fact that n′f = O (n′).

A block is pending if it is waiting to be read from or
written to some device. The number of pending blocks
affects the effective number of failures per round.

Check what to do in next lemma regarding lamdda and xi

Lemma 4: Let m be the total number of system-wide
pending blocks in steady state. Then

m / n

(
λβcts +

e
Λ
Ξ − 1

2− e
Λ
Ξ

)
≈ nβcλ

(
ts +

k + 1
µr

)
, (74)

where

Λ ≈ λβc (k + 1) , (75)
Ξ = µr.

Proof:

Add explanation on prev rounds

The inter-failure time of devices from S is distributed.
With high probability, the number of failed functioning de-
vices in an epoch approaches (1± o (1)) λnsts; the number
of functioning devices is always in the approximate range
[n− nλsts, n] . It follows that the failure rate of functioning
devices normalized by the remaining number of functioning
devices can be upper bounded by

(1± o (1))
λnsts

(n− nλsts) sts
. (76)

12

The failure of each failed functioning-device’s block gen-
erates k read requests approximately uniformly distributed
among functioning devices. Since the inter-failure time of
failed devices is exponential, and a random splitting of an
exponential process is itself an exponential process [39],
the read-request process per device is approximately dis-
tributed exponentially with rate

λnβcstsk

(n− nλsts) sts
. (77)

The failure of each failed functioning-device’s block gen-
erates a single write requests and possibly reassignment
requests. By the same reasoning, the process generated
by these requests per functioning device is approximately
distributed exponentially, with rate

λnβcstsk

(n− nλsts) sts

1
k(1− γ)

(a)≈ λnβcsts
(n− nλsts) sts

, (78)

where

β′ = β + 2
nRβ

n
= β

(
1 + 2λsts + 2(λsts)2

)
, (79)

γ =

 2

β′
(

1
β′ − 1

)3

c

1
3

, (80)

and (a) follows from the fact that c is large.

To maintain equilibrium between the contraction and
expansion processes, the number of replacement devices
should be approximately

(
nλsts + n (λsts)

2
)

, (81)

where the first term is due to the expected number of failed
devices from S, and the second term is due to the expected
number of failed replacement devices. By the same reason-
ing as above, the average rate of requests per functioning
device due to the expansion process is

(
nλsts + n (λsts)

2
)

βc

(n− nλsts) sts
, (82)

which by (55) is negligible in comparison to (77) or (78).

Since the sum process of two exponential processes is
exponential [39], the load on each functioning device can
be modelled by an M/D/1 queue. The birth rate is given
by the sum of (77) and (78), which by (55) is approximately
λβc(k + 1). The death rate is µr.

In Section V we deal with bounds on such queues. Corol-
lary 1 of Subsection V-D gives the steady state distribution
of each queue, given the birth and death rates. Using this
and the fact that the lengths of the queues are negatively
dependent, we obtain (74).

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

300

350

N
um

be
r

of
 e

xp
an

si
on

 r
eq

ue
st

s

Time

Fig. 8. num bal r reqs as f of time.

C. Simulation Results

In this subsection we show simulation results for the
random-sparing scheme:
• Figure 4 shows the single-layer storage-rate and maximal
fraction of fixable nodes as a function of left and right edge-
degrees (derived in (18) and (13) respectively). As noted,
the rate of this code is sub-optimal, necessitating the use
of the augmented code from Subsection II-C.
• We have performed 500 tests on the block error-
probability. In each test a random code with m = 10000
left nodes, q̂ = 4, â = 4, α̂ = 1

3 , and 8236 right nodes was
first built. Then, 106 iterations were performed. In each
iteration 3900 left nodes were initially set to be corrupted,
and were then attempted to be fixed. The code succeeded
in every single iteration of every single test.
• Figures 5 and 6 show the number of updated nodes as a
function of the fraction of modified left nodes, for the case
q̂ = 4, â = 7, and m = 10004 left nodes. Note that as pre-
dicted, simulation results coincide with the expected value,
given by (16). For small fractions of left nodes being up-
dated, the number of update-IOs can be approximated as
the number of updated left nodes times average left degree
(al).
• Figure 7 shows the number of nodes, accessed by the
recovery procedure, as a function of the fraction of failed
left nodes, for the case q̂ = 4, â = 7, and m = 10004
left nodes. Note that the assumption of a accesses per
each failed node gives the upper bound on the number of
accessed nodes, as shown in (15).

13

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
N

um
be

r
of

 w
rit

e
re

qu
es

ts
 d

ue
 to

 fu
ll

de
vi

ce
s

Time

Fig. 9. num cong as f of time.

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

300

350

400

450

500

N
um

be
r

of
 p

en
di

ng
 b

lo
ck

s

Time

Fig. 10. num int mem as f of time.

0 2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

600

700

800

N
um

be
r

of
 p

en
di

ng
 b

lo
ck

s

Time

Fig. 11. num pend blks as f of time.

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Recovery group size (k)

N
um

be
r

of
 p

en
di

ng
 b

lo
ck

s
(m

)

Expected result
Simulation result

Fig. 12. p blcks f of k.

1000 1200 1400 1600 1800 2000 2200 2400
300

400

500

600

700

800

900

1000

1100

1200

1300

n

N
um

be
r

of
 p

en
di

ng
 b

lo
ck

s
(m

)

Expected result
Simulation result

Fig. 13. p blcks f of n.

0 2 4 6 8

x 10
−4

0

100

200

300

400

500

600

700

800

900

λ

N
um

be
r

of
 p

en
di

ng
 b

lo
ck

s
(m

)

Expected result
Simulation result

Fig. 14. p blcks f of lambda.

14

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

r

N
um

be
r

of
 p

en
di

ng
 b

lo
ck

s
(m

)

Expected result
Simulation result

Fig. 15. p blcks f of r.

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fig. 16. p blcks f of rec grp sz.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10

2

10
4

10
6

10
8

10
10

10
12

Fraction of full devices (β’)

D
ev

ic
e

ca
pa

ci
ty

 (
c)

By Bound
By Simulation

Fig. 17. full devs as f of beta tag.

1 2 3 4 5 6
0

1

2

3

4

5

6
x 10

4

Block recovery period (rounds)

Fig. 18. block in rec time rounds hist.

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000

8000

Block recovery period (round equals 10 time units) (time units)

Fig. 19. Recovery histogram ticks.

D. Discussion

In this section we have shown how to create a level em-
ploying random sparing. This scheme appears to be similar
to one indpendently proposed in OceanStore [27]. From
Theorem 4, though, we deduce that the storage rate for
small and large coding-groups must differ, as opposed to
the uniform coding-rate in OceanStore. Theorem 4 also
concurs with the bounds from Section ??; as the amount
of user data grows, the coding-group size must grow as
well, and the performance must decrease. The scheme can
be used however to build a hierarchy of levels.

The scheme relies on the use of codes with recovery
locality. It was previously shown that codes with good
update locality have bad recovery locality, and vice versa
[31]. While this is true when considering a single code, the
conclusion is somewhat different when considering random
sparing. The analysis in Lemma 4 shows that if codes do

15

Λ
0,1

A
0

A
1

A
i

A
2

Λ
1,0

Λ
i,i+1

Ξ
1,0

Ξ
2,1

Ξ
i,i-1

Λ
i-1,i

Ξ
i,i-1

Λ
0,2

Λ
0,i

Λ
1,i

Λ
1,i

Fig. 20. Discrete-time Markov-graph of failed devices.

not have recovery locality, the load on each device-queue
grows indefinitely. It follows that the redundancy of each
coding group must grow as well. In this case, the update
performance must degrade.

V. High-Intensity Data

For high-intensity data, high performance codes should
be used. Assume a group of size n is coded in an MDS
code of storage rate 1

n . One such code is the repetition
code, wherein an item is replicated n times. In the setting
of storage, the repetition code is usually termed (multi-
way) mirroring. The repetition code does not require a
read-modify-write sequence of operations to all redundant
items, when a data item is modified. It is easy to show
that it is the only such code (up to trivial variations). This
makes the repetition code a good candidate for use in high
intensity data level.

A possible semi-Markov modelling of the system is shown
in Figure 20. The model consists of n+1 states, A0, . . . , An.
The state Ai indicates that i devices are failed. The model
begins in state A0; and terminates in state An, when data
is lost. The various Λi,j and Ξj,i indicate the transition
rates between states, and we define them later on (they
do not have the exact interpretation of the corresponding
M/M/1 queue values).

At each discrete multiple of td, the system detects the set
of failed devices. Let Ai and Aj be arbitrary states, where
i � j. A transition from Ai to Aj takes place when j−i+1
devices fail in time td. Note that neglecting the occurrence
of two simultaneous events, valid in the M/M/1 queue, is
no longer valid. A transition from state Aj to state Ai

takes place when j − i + 1 devices have been recovered.
The recovery of a device is performed by reading a copy
of the data from operating devices, and writing it to a
replacement device (and therefore requires c

r time).

Note that the assumption that the model state com-
pletely determines the system state, valid in the M/M/1
queue, is not valid. The transition from Aj to Ai depends
on the length of time the system has been in state Aj , as
well as the path by which Aj has been reached.

In general, a more complicated setting may be consid-
ered, where the number of copies is considered, rather than
the number of devices. Exploiting recovery-parallelism, the
number of copies recovered in a given time may depend on

the number of existing copies. We do not analyze this set-
ting in this work.

The use of birth-death processes for finding the MTTDL
has been previously used for the case where the number of
states is small [1], [17], [22]. When the number of states
is large, the ability to recover many devices in parallel,
is lost in the model. Also, as noted above, the exponen-
tial distribution does not coincide with the deterministic
recovery-time, nor does it take into account the detection
latency.

The section is organized as follows. In Subsection V-
A we model the system in Figure 20 in a way in which is
amenable for finding a lower bound on the MTTDL. In Sub-
section V-B we show a solution to the model in Subsection
V-A. In Subsection V-C we show an improved approxima-
tion for the lower bound. In Subsection V-D we use the
same ideas to find a simple bound on steady-state distri-
butions for the M/D/1 queue, a result needed for Section
??. In Subsection V-E we show simulation results on the
MTTDL of multi-way mirroring.

A. Modelling the System State

The system in Figure 20 shows the model from the view-
point of the system controller. In a time interval td, many
devices can fail. Devices can be in different stages of re-
covery. This means that each state can be reached from
many different states. The resulting system of equations
is complex. Rather than solving it directly, we consider a
different system and viewpoint.

We consider a system composed of n devices, with failure
CDFs 1 − e−λ̂1t, . . . , 1 − e−λ̂nt (t ≥ 0), respectively. We
will require in particular two cases: the case n = 2 with
arbitrary λ̂1 and λ̂2, and the case of an arbitrary n with
λ̂1 = · · · = λ̂n = λ̂. We consider the same failure-detection
latency and recovery time as in the original system. If a
device fails during the recovery of some other devices, the
recovery process is aborted and re-initiated. An imaginary
observer with zero-delay knowledge of the state of each
device observes the system. We consider the view of this
observer. The model then becomes that in Figure 21.

In this model, it can be shown that neglecting two si-
multaneous events is valid. Note that a solution for this
model is a lower bound on the solution of a original system
in which device failure during recovery does not re-initiate
the recovery process.

Let A(t) be the state at time t. Let

pi,j(h + t, t) = P (A(h + t) = Aj | A(t) = Ai), (83)
pi(h + t, t) = p0,i(h + t, t).

As opposed to an M/M/k type of setting, it is not possible
to precisely define here

pi,j(h) = pi,j(h + t, t), (84)
pi(h) = p0,i(h + t, t),

16

Λ
0

A
0

A
1

A
n-1

A
n

A
2

Λ
1

Λ
n-1

Ξ
1

Ξ
2

Ξ
n-1

Fig. 21. Markov-graph of failed devices.

since the model state alone does not determine the system
state. By equating the transition rates between states, we
show that (84) can hold as an approximation, and be found
by a system of approximate differential equations.

Definition 5: Let

Ξ(Λ) = Λ

(
1

1− e−Λ c
r

1−e−Λtd

Λtd

− 1

)
. (85)

Let pi(t) = pi(t, λ̂1, . . . , λ̂n, c
r , td) be defined by the system

of differential equations:

p′i(t) = (86)
Λi−1pi−1(t) + Ξi+1pi+1(t)− (Λi + Ξi)pi(t),

p0 (0) = 1,

p1 (0) = · · · = pn (0) = 0,

for i ∈ {0, . . . , n}, and Λi and Ξi defined as:
• For the case of system of two devices:

Λ0 = λ̂0 + λ̂1, (87)

Λ1 =
λ̂1λ̂2

(
λ̂1 + λ̂2 + Ξ(λ̂1) + Ξ(λ̂2)

)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
,

Ξ1 =
λ̂2

1Ξ(λ̂2) + λ̂2
2Ξ(λ̂1) + λ̂1Ξ(λ̂1)Ξ(λ̂2) + λ̂2Ξ(λ̂1)Ξ(λ̂2)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
,

Λ−1 = Λ2 = Ξ0 = Ξ2 = 0.

• For the case of n identical devices:

Λi =
{

0 , j ∈ {−1, n}
(n− i)λ̂ , otherwise

, (88)

Ξi ={
0 , i ∈ {0, n, n + 1}
Ξ(Λi) , otherwise .

By equating transition rates, we show the following.
Theorem 5: The probability of data loss at time t is lower

bounded by pn(t), given by Definition 5.

Proof: In the new model, recovery does not commence
immediately once devices fail (due to the detection latency
td). If it is known that an exponential event occurred up
to time t+td, then the a-posteriori probability of its taking
place at any time t′ ∈ [t, t + td] is equally likely.

Consider two random variables, tbi and tdi , with respective
PDFs:

Λie
−Λit , (t > 0), (89)

1
td

,
(
t ∈

[c

r
,
c

r
+ td

])
.

We define a third process t`i = min
{
tdi , tbi

}
. The rate of

the renewal process generated by t`i , is then 1

E[t`
i]

. It can

be shown that

E
[
t`i

]
=

1
Λi

(
1− e−Λi

c
r
1− e−Λitd

Λitd

)
. (90)

Each renewal in the process generated by tli is caused by
either tbi or tdi . We define the probabilities

pb
i = P

(
min

{
tdi , t

b
i

}
= tbi

)
, (91)

pd
i = P

(
min

{
tdi , t

b
i

}
= tdi

)
.

It can be shown that

pb
i = e−Λi

c
r
1− e−Λitd

Λitd
, (92)

pd
i = 1− e−Λi

c
r
1− e−Λitd

Λitd
. (93)

By using the standard technique [39] of equating the
entry and exit rate of each state using the Chapman-
Kolmogorov equations, it can be shown that in this case,

p′i,j(t) =
∑

k 6=j

qk,jpi,k(t)− νjpi,j(t) (94)

holds approximately, where νj is the rate of the renewal
process generated by t`j , and qi,k is the rate of the renewal
process generated by transferring from Ai to Ak.

It follows that we can insert into (94) the following:

qi,i+1 = Λi = pb
i

1
E

[
t`i

] , (95)

qi,i−1 = Ξi = pd
i

1
E

[
t`i

] ,

νi = Λi + Ξi =
1

E
[
t`i

] .

It now remains to find the various Λi and Ξi:

• For the system of 2 devices, the failure rate when in state
A0 is clearly Λ0 = λ̂1 + λ̂2. With probability λ̂1

λ̂1+λ̂2
, the

device with λ̂2 fails first. In this case, Λ1 = λ̂2 and Ξ1 =
Ξ(λ̂2). Similarly, with probability λ̂2

λ̂1+λ̂2
, Λ1 = λ̂1 and

17

Ξ1 = Ξ(λ̂1). By applying the Bayes rule, we get:

E
[
t`1

]
= (96)

λ̂1

λ̂1 + λ̂2

1

λ̂2 + Ξ(λ̂2)
+

λ̂2

λ̂1 + λ̂2

1

λ̂1 + Ξ(λ̂1)
=

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)(
λ̂1 + Ξ(λ̂1)

)(
λ̂1 + λ̂2

)(
λ̂2 + Ξ(λ̂2)

) ,

pb
i =

λ̂1λ̂2

(
λ̂1 + λ̂2 + Ξ(λ̂1) + Ξ(λ̂2)

)
(
λ̂1 + Ξ(λ̂1)

)(
λ̂1 + λ̂2

)(
λ̂2 + Ξ(λ̂2)

) ,

pd
i =(

λ̂2
1Ξ(λ̂2) + λ̂2

2Ξ(λ̂1) + λ̂1Ξ(λ̂1)Ξ(λ̂2) + λ̂2Ξ(λ̂1)Ξ(λ̂2)
)

(
λ̂1 + Ξ(λ̂1)

)(
λ̂1 + λ̂2

)(
λ̂2 + Ξ(λ̂2)

) .

Combining (95) and (96), we have

Λ1 = (97)

λ̂1λ̂2

(
λ̂1 + λ̂2 + Ξ(λ̂1) + Ξ(λ̂2)

)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
,

Ξ1 =
λ̂2

1Ξ(λ̂2) + λ̂2
2Ξ(λ̂1) + λ̂1Ξ(λ̂1)Ξ(λ̂2) + λ̂2Ξ(λ̂1)Ξ(λ̂2)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
.

• For the system of n identical devices, when in state Ai,
the time to device failure is clearly distributed exponen-
tially with rate Λi = (n− i)λ̂. Ξi can be found as before.

B. Estimating the MTTDL

In this subsection we modify the method in [40] to solve
(86) for the MTTDL.

Theorem 6: Assume that

1
c
r + td

2

À nλ. (98)

Then the MTTDL of the system in Figure 21 is approxi-
mately lower bounded by

n∑

j=1

1
Λj−1

n−1∏

i=j

(
1 +

Ξi

Λi

)
≈

(
1

c
r +

td
2

)n−1

n!λn
, (99)

where Ξi = Ξ(Λi).
Proof: For the system in Figure 21, the equation

system (86) becomes the following:

p′0 (t) = −Λ0p0 (t) +
n−1∑

i=1

Ξipi (t), (100)

p′j (t) = − (Ξj + Λj) pj (t) + Λj−1pj−1 (t) ,

p′n (t) = Λn−1pn−1 (t) ,

p1 (0) = 1,

where j ∈ [n− 1].

Using the Laplace transform:
∫ ∞

0

pj (t) e−st dt = aj(s), (101)
∫ ∞

0

p′j (t) e−st dt = −pj (0) + saj(s),

we obtain the equation system:

(−s− Λ0)a0(s) +
k−1∑

i=1

Ξiai(s) = −p0 (0) = −1, (102)

(−s− Ξj − Λj)aj(s) + Λj−1aj−1(s) = −pj (0) = 0,

−san(s) + Λn−1 = 0.

Note that once the system enters An, it will not leave it.
It follows that defining the MTTDL by tn, we have

tn =
∫ ∞

0

RS (t) dt =
∫ ∞

0

tp′n (t) dt. (103)

By properties of the reverse Laplace-transform, this is

tn = − d (san(s))
d s

∣∣∣∣
s=0

. (104)

We therefore need to solve the equation system (102) for
an(s). To do so, we apply Cramer’s rule, obtaining

an(s) =
gn(s)
g(s)

, (105)

where

g(s) = (106)

∆

−RO
0 Ξ1 Ξ2 . . . Ξn−1

Λ0 −RO
1

.
.

Λn−2 −RO
n−1

Λn−1 −s

,

gn(s) = (107)

∆

−RO
0 Ξ1 Ξ2 . . . Ξn−1 −1

Λ0 −RO
1

.
.

Λn−2 −RO
n−1

Λn−1

,

and

RO
i = Λi + Ξi + s. (108)

We first develop g(s) and gn(s). For the former, we have

g(s) = −sγn(s), (109)

18

where

γn(s) = (110)

∆

−RO
0 Ξ1 Ξ2 . . . Ξn−1

Λ0 −RO
1

.
.

Λn−2 −RO
n−1

.

For the latter, we have

gn(s) = (−1)n+1
n−1∏

i=0

Λi. (111)

Inserting (109) and (111) into (105) and (104), we have

tn =
g′n(0) + γ′n(0)

γn(0)
. (112)

In the matrix within the determinant in (106), we may
add all rows to the last without altering g(s). To the matrix
within the determinant in (107), we may append an all-0
column and the row −s,−s, . . . ,−1, without altering gn(s).
After doing so, we have

gn(s) + γn(s) = (113)

∆

−RO
0 Ξ1 Ξ2 . . . Ξn−1 −1

Λ0 −RO
1

.
.

Λn−2 −RO
n−1

−s −s −s −s −s −1

−

∆

−RO
0 Ξ1 Ξ2 . . . Ξn−1 0

Λ0 −RO
1

.
.

Λn−2 −RO
n−1

−s −s −s −s −s −1

(a)
=

∆

−RO
0 Ξ1 Ξ2 . . . Ξn−1 −1

Λ0 −RO
1

.
.

Λn−2 −RO
n−1

−s −s −s −s −s 0

,(114)

where (a) follows from the fact that the determinant is
distributive over matrices identical in all rows but one.

We note that the determinant in (114) is

s(−1)nBn(s), (115)

where

Bn(s) = (116)

∆

Λ0 −RO
1

.
.

Λn−2 −RO
n−1

1 1 1 1 1

.

Furthermore, the following recurrence system is satisfied at
s = 0:

Bk(0) =
k−2∏

i=0

Λi + (Λk−1 + Ξk−1) Bk−1(0), (117)

B1(0) = 1.

Solving (117), we obtain

Bk(0) =
k∑

j=1

j−2∏

i=0

Λi

k∏

i=j+1

(Λi−1 + Ξi−1) . (118)

Setting s = 0 in (110), we have

γn(0) = (−1)n+1
n−1∏

i=0

Λi. (119)

Inserting (118) and (119) into (112), we get

tn = (120)
1

γn(0)
d (gn(s) + γn(s))

d s

∣∣∣∣
s=0

=

(−1)k Bn(0)
γn(0)

=

n∑

j=1

1
Λj−1

n−1∏

i=j

(
1 +

Ξi

Λi

)
.

By applying (98) to (85), we have

min
i

{
Ξi

Λi

}
À 1, (121)

and (120) simplifies to

tn ≈

n−1∏

i=1

Ξi

n−1∏

i=0

Λi

. (122)

This can be further simplified by substituting

Λi = (n− i)λ, (123)

Ξi

(a)≈
(

1
c
r + td

2

)
,

where (a) follows from the application of (98) to (85).

19

C. Improving the MTTDL Estimation

The system model from Subsection V-B assumes that
any device failure while recovery, restarts the recovery pro-
cess. This is needed for the definition of the state-transition
rates. This is clearly a drawback. The MTTDL found in
Section V-B therefore only lower bounds the true MTTDL.
In this subsection we attempt to rectify this by considering
“compound devices”, i.e., devices composed of a sub-group
of devices.

The main point we prove in this subsection is the follow-
ing.

Theorem 7: Assume that

1
c
r + td

2

À 2λ. (124)

Then the MTTDL of the system in Figure 21 is approxi-
mately

(
1

c
r +

td
2

)n−1

2n−1λn
. (125)

We first analyze the failure-time distribution for the gen-
eral case of two devices.

Lemma 5: A system of 2 devices whose failure times have
respective CDFs 1−e−λ̂1t and 1−e−λ̂2t, has a failure time
having an approximate CDF

1− e−
2λ̂1λ̂2

Ξ t (126)

where

Ξ =
1

c
r + td

2

, (127)

assuming that

1
c
r + td

2

À max
{

λ̂1, λ̂2

}
. (128)

Proof: For this case, (86) becomes

p′0 (t) = Ξ1p1 (t)− Λ0p0 (t) , (129)
p′1 (t) = Λ0p0 (t)− (Ξ1 + Λ1)p1 (t) ,

p′2 (t) = Λ1p1 (t) ,

where

Λ0 = λ̂0 + λ̂1, (130)

Λ1 =
λ̂1λ̂2

(
λ̂1 + λ̂2 + Ξ(λ̂1) + Ξ(λ̂2)

)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
,

Ξ1 =
λ̂2

1Ξ(λ̂2) + λ̂2
2Ξ(λ̂1) + λ̂1Ξ(λ̂1)Ξ(λ̂2) + λ̂2Ξ(λ̂1)Ξ(λ̂2)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
.

Solving (129) for p0 (t) and p1 (t), we get

p0 (t) = −r2 + Λ0

r1 − r2
er1t +

r1 + Λ0

r1 − r2
er2t, (131)

p1 (t) =
(Λ0 + r1) (Λ0 + r2)

Ξ1 (r1 − r2)
(−er1t + er2t

)
,

where

r1,2 = (132)

−Λ0 − Λ1 − Ξ1 ±
√

(Λ0 + Λ1 + Ξ1)2 − 4Λ0Λ1

2
=

Λ0 + Λ1 + Ξ1

2

(
−1±

√
1− 4Λ0Λ1

(Λ0 + Λ1 + Ξ1)
2

)
.

Using the approximation in (128), we derive the following
approximations for i = 1, 2: λ̂itd ¿ 1 and λ̂i

c
r ¿ 1. Ap-

plying these approximations to (85), and using the power-
series approximation of ex for small x, we get Ξ(λ̂2) ≈
Ξ(λ̂2) ≈ Ξ = 1

c
r +

td
2

. Applying this to (130), we get

Ξ1 ≈ Ξ =
1

c
r + td

2

. (133)

Applying (133) and using Ξ À max{λ̂1, λ̂2} in (130), we
get

Λ1 ≈ 2λ̂1λ̂2

(λ̂1 + λ̂2)

(a)

≤ 2max
{

λ̂1, λ̂2

}
, (134)

where (a) follows from the Arithmetic - Geometric Mean in-
equality. Combining (134) with (133), we get Ξ1

max{Λ1,Λ2} À
1. Using this fact, we approximate

r1 ≈ − (Λ0 + Λ1 + Ξ1) (135)

r2 ≈ − Λ0Λ1

Λ0 + Λ1 + Ξ1
≈ −Λ0Λ1

Ξ1
.

The lemma follows by the fact that

|r1| À |r2| ⇒ er1t ¿ er2t. (136)

We now prove Theorem 7.
Proof: Lemma 5 gives the approximate failure-CDF

of a system composed of two devices. From (126) we see
that this distribution is exponential with inverse mean

λ̃ =
2λ̂1λ̂2

Ξ
≈ (137)

2λ̂1λ̂2

(
c

r
+

td
2

)
.

Given a system of n 2 devices, we can recursively con-
sider the system as composed of two devices, one simple,
and one “compound”, both with failure times distributed
exponentially. The corresponding state diagram is shown
in Figure 22. In general, we can decompose a system of n
devices recursively, s.t. each device represents a compound
device, an example of which is shown in Figure 23.

When analyzing the reliability of such a system, it is
convenient to view it as a full binary tree (i.e., a tree where
each node has 0 or 2 children), as in diagrams (a) and (b) of

20

Λ0

A’
2

Λ
1

Ξ
1

Λ�
0

A
0

A
1

A
i

A
i+1

A
2

Λ�
1

Λ�
i

Ξ�
1

Ξ�
2

Ξ�
i

A’
1

A
0

(b)

(a)

Fig. 22. Reduction to a compound system.

Λ�
0

A
0

A
1

A
n-1

A
n’

A
2

Λ�
1

Λ�
n-1

Ξ�
1

Ξ�
2

Ξ�
n-1

Λ
0

A’’
0

A’’
1

A’’
n-

1

A’’
i

A’’
2

Λ
1 Λ

n-1

Ξ
1

Ξ
2

Ξ
n-1

A’’
1

A’’
2

A’’
3

A’’
i-1

Fig. 23. A recursive analysis.

Figure 24. In the tree of each diagram, any leaf is a device
node (indicated by D). Any inner node is a compound node
(indicated by C), the reliability of which is determined by
its children nodes. The system reliability is that of the
root. Lemma 5 shows how to combine the MTTDL of
two subtrees. Surprisingly, the MTTDL of the entire tree
depends only on the number of leaves, and not on the tree
topology chosen.

D. Lower Bounds on M/D/1 Steady-State Distributions

In this subsection we find a simple bound on steady-
state distributions for the M/D/1 queue. This is needed
for Section IV.

For the case of the M/D/1 queue, equating the transition
rates yields the following simple lower-bound approxima-
tion. In Figure 25 we see a graph corresponding to the

C

C C

D D DC

D D

C

D C

D C

D C

D D

(b)(a)

Fig. 24. A tree formed by the recursive analysis

Λ
0

A
0

A
1

A
i

A
2

Λ
1

Λ
i

Ξ
1

Ξ
2

Ξ
i+1

Λ
i-1

Ξ
i

Fig. 25. Markov-graph of birth-death process of failed devices.

M/D/1 process. Specifically, assume the process is a birth-
death process, with births generated by a Poisson process
with mean interval times 1

λ , and deaths occurring deter-
ministically after 1

ξ time.

Corollary 1: For the given M/D/1 queue, let Pi be the
steady-state distribution of state Ai. Then

Pi =
(
e

λ
ξ − 1

)i (
2− e

λ
ξ

)
. (138)

Proof: Following [39], we equate the transition rates,
resulting, in a manner similar to the one used in Subsection
V-A, in

Pi =

ΞP1
λ , i = 0

ΞPi+1+λPi−1
Ξ+λ , i 6= 0

, (139)

where

Ξ = λ

(
1

1− e−
λ
ξ

− 1
)

(140)

by 85.
The proof follows by solving (139), subject to the con-

straint
∑∞

i=0 Pi = 1.

E. Simulation Results

In this subsection we show simulation results for multi-
way mirroring:
• Figures 26, 27, and 28 show the behavior of a system of
two devices (Subsection V-C) for different settings of λ̂1,
λ̂2, and Ξ. Each of the figures compares the CDFs obtained

21

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

D
at

a
Lo

ss
 P

ro
ba

bi
lit

y

Numerical solution

Approximation as 1−e−2λ
1
λ

2
 t/Ξ

Simulation result

Fig. 26. The CDF of the two-devices system MTTDL, for the case

λ̂1 = λ̂2 = 1
30

and Ξ = 1.

by the following: the numerical solution of a differential-
equation model of the system, the approximated solution
shown in Lemma 5, and the results obtained by a software
simulation of the system of devices. Note that the simula-
tion results coincide with the approximation of Lemma 5
for both λ̂1 = λ̂2 and λ̂1 À λ̂2 settings. This result justifies
the assumption that the MTTDL of a “compound device”
has exponential distribution.
• Figure 29 and 30 show the behavior of a system as a
function of the number of devices (n). Figure 29 compares
the MTTDLs obtained by the following: the results ob-
tained by a software simulation of the system of devices,
the exact and approximated expression from Theorem 6,
and the approximation of Theorem 7. Note that Theorem
7, based on the ”compound device” approach, achieves the
best estimation. Figure 30 compares, for two different set-
tings, the MTTDLs obtained by the following: the results
obtained by a software simulation of the system of devices,
and the approximation of Theorem 7. Note that Theorem
7 indeed gives a lower bound on the system MTTDL.

VI. Conclusions and Future Work

In this work we have presented and analyzed codes for
storage systems. We have shown that it is easy to con-
struct LDGM codes which have bounded recovery penalty.
We have shown algorithms which incorporate codes of
this type. Finding bounds and optimal codes subject to
bounded penalty constraints, is left to future research. We
have analyzed the distribution of the time to data loss of
multi-way mirroring. The fact that such radically differ-
ent codes and schemes can be applied to storage systems,
suggests that storage reliability should be hierarchical [41].
This in turn raises many questions on the number of levels
the hierarchy should contain, the code appropriate to each
level, and the transition policy between levels. We leave
these interesting questions to future research.

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

D
at

a
Lo

ss
 P

ro
ba

bi
lit

y

Numerical solution

Approximation as 1−e−2λ
1
λ

2
 t/Ξ

Simulation result

Fig. 27. The CDF of the two-devices system MTTDL, for the case

λ̂1 = λ̂2 = 1
50

and Ξ = 1.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

D
at

a
Lo

ss
 P

ro
ba

bi
lit

y

Numerical solution

Approximation as 1−e−2λ
1
λ

2
 t/Ξ

Simulation result

Fig. 28. The CDF of the two-devices system MTTDL, for the case

λ̂1 = 1
30
À λ̂2 = 1

900
and Ξ = 1.

VII. Acknowledgements

Thanks to Dana Ron and David Burshtein of the Dept.
of EE-Systems at Tel Aviv University, and Alain Azagury,
Michael Factor, Kalman Meth, Julian Satran, and Dafna
Sheinwald of IBM, for useful discussions.

References

[1] G. A. Gibson, Redundant Disk Arrays: Reliable Parallel Sec-
ondary Storage, ser. ACM Distinguished Dissertations. Cam-
bridge, MA: MIT Press, 1992.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory,
ser. Wiley Series in Telecommunications. New York, NY, USA:
John Wiley & Sons, 1991.

[3] P. Elias, “Coding for two noisy channels,” in Information Theory
Third London Symposium. London: Buterworth’s Scientific
Publications, Sept. 1955, pp. 61–76.

[4] C. Shannon, “A mathematical theory of communication,” The
Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, July
1948.

[5] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan,

22

0 10 20 30 40 50
10

0

10
10

10
20

10
30

10
40

10
50

10
60

number of devices (n)

M
T

T
D

L

Simulation result
Aproximation as Ξn−1/(2n−1λn)
Approximation as Ξn−1/(n!λn)
Approximation as in "Estimating the MTTDL" subsection

Fig. 29. The system MTTDL as a function of the number of devices

(n), for the case λ̂1 = . . . = λ̂n = 1
30

and Ξ = 1.

2 3 4 5 6 7
10

2

10
4

10
6

10
8

10
10

10
12

number of devices (n)

M
T

T
D

L

MTTDL by simulation, Ξ=1, λ=1/30
Approximated MTTDL, Ξ=1, λ=1/30
MTTDL by simulation, Ξ=1, λ=1/50
Approximated MTTDL, Ξ=1, λ=1/50

Fig. 30. The system MTTDL as a function of the number of devices
(n).

“Priority encoding transmission,” in Proceedings: 35th Annual
Symposium on Foundations of Computer Science, Santa Fe,
New Mexico. 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA: IEEE Computer Society Press, Nov. 1994, pp. 604–
612.

[6] S. Boucheron and K. Salamatian, “About priority encoding
transmission,” IEEE Trans. Inform. Theory, vol. 46, pp. 697–
705, Mar. 2000.

[7] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-
Correcting Codes, ser. North-Holland Mathematical Library.
North-Holland, 1977, vol. 16.

[8] I. S. Reed and G. Solomon, “Polynomial codes over certain fi-
nite fields,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 2, pp. 300–304, June 1960.

[9] N. Alon and M. Luby, “A linear time erasure-resilient code with
nearly optimal recovery,” IEEETIT: IEEE Transactions on In-
formation Theory, vol. 42, 1996.

[10] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon
limit error-correcting coding and decoding:turbo-codes,” in Pro-
ceedings of IEEE ICC’93.

[11] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spiel-
man, and V. Stemann, “Practical loss-resilient codes,” in Pro-
ceedings of the 29th Annual ACM Symposium on the Theory of

Computing (STOC ’97). New York: Association for Computing
Machinery, May 1997, pp. 150–159.

[12] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.
Spielman, “Improved low-density parity-check codes using ir-
regular graphs,” IEEETIT: IEEE Transactions on Information
Theory, vol. 47, 2001.

[13] A. Shokrollahi, “New sequences of linear time erasure codes ap-
proaching the channel capacity,” pp. 65–76, 1999.

[14] J. A. Katzman, “System architecture for nonstop computing,” in
14th IEEE Cpmputer Society International Conference (COM-
PCON), Feb. 1977, pp. 77–80.

[15] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redun-
dant arrays of inexpensive disks (raid),” in Proceedings of the
ACM Conference on Management of Data (SIGMOD), June
1988, pp. 109–116.

[16] Q. M. Malluhi and W. E. Johnston, “Coding for high availability
of a distributed-parallel storage system,” IEEE Transactions on
Parallel and Distributed Systems, vol. 9, no. 12, pp. 1237–1252,
Dec. 1998.

[17] Q. Xin, E. Miller, D. Long, S. Brandt, T. Schwarz, and
W. Litwin, “Reliability mechanisms for very large storage sys-
tems,” in In Proceedings of the 20th IEEE / 11th NASA God-
dard Conference on Mass Storage Systems and Technologies.
IEEE, Apr. 2003.

[18] M. Holland, G. A. Gibson, and D. P. Siewiorek, “Architectures
and algorithms for on-line failure recovery in redundant disk
arrays,” Journal of Distributed and Parallel Databases, vol. 2,
no. 3, pp. 295–335, July 1994.

[19] J. Menon and D. Mattson, “Distributed sparing in disk arrays,”
in Proceedings of the COMPCOM Conference, Feb. 1992, pp.
410–421.

[20] J. M. Menon and R. L. Mattson, “Comparison of sparing alter-
natives for disk arrays,” in Proceedings the 19th Annual Interna-
tional Symposium on Computer Architecture,ACM SIGARCH,
Gold Coast, Australia, May 1992, pp. 318–329.

[21] A. Thomasian and J. Menon, “RAID5 performance with dis-
tributed sparing,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 8, no. 6, pp. 640–657, June 1997.

[22] X. Wu, J. Li, and H. Kameda, “Reliable analysis of disk array
organizations by considering uncorrectable bit errors,” in Pro-
ceedings of The 16th Symposium on Reliable Distributed Systems
(SRDS ’97). Washington - Brussels - Tokyo: IEEE, Oct. 1997,
pp. 2–9.

[23] J. Chandy and A. L. N. Reddy, “Failure evaluation of disk array
organizations,” in Proceedings of the 13th International Confer-
ence on Distributed Computing Systems, R. Werner, Ed. Pitts-
burgh, PA: IEEE Computer Society Press, May 1993, pp. 319–
327.

[24] R. G. S. Kirkpatrick, W. Wilcke and H. Huels, “Percolation in
dense storage arrays,” in Messina Symposium,.

[25] F. Chang, M. Ji, S.-T. Leung, J. MacCormick, S. Perl, and
L. Zhang, “Myriad: Cost-effective disaster tolerance,” in Pro-
ceedings of the FAST ’02 Conference on File and Storage Tech-
nologies (FAST-02). Berkeley, CA: USENIX Association, Jan.
28–30 2002, pp. 103–116.

[26] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP
AutoRAID hierarchical storage system,” in High Performance
Mass Storage and Parallel I/O: Technologies and Applications,
H. Jin, T. Cortes, and R. Buyya, Eds. New York, NY: IEEE
Computer Society Press and Wiley, 2001, pp. 90–106.

[27] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels, R. Gum-
madi, S. Rhea, W. Weimer, C. Wells, H. Weatherspoon, and
B. Zhao, “OceanStore: An architecture for global-scale persis-
tent storage,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 190–
201, Nov. 2000.

[28] H. Weatherspoon, M. Delco, and S. Zhuang, “Typhoon:
An archival system for tolerating high degrees of file server
failure,” 1999, available through http://www.cs.berkeley.edu/
∼hweather/Typhoon/TyphoonReport.html.

[29] G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz, and
D. A. Patterson, “Failure correction techniques for large disk
arrays,” Third Int’l Conf. on Architectural Support for Program-
ming Languages and Operating Systems, p. 123, Apr. 1989.

[30] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A.
Patterson, “Coding techniques for handling failures in large disk
arrays,” Algorithmica, vol. 12, no. 2/3, pp. 182–208, Aug./Sept.
1994.

[31] Y. Chee, Colbourn, and Ling, “Asymptotically optimal erasure-

23

resilient codes for large disk arrays,” DAMATH: Discrete Ap-
plied Mathematics and Combinatorial Operations Research and
Computer Science, vol. 102, 2000.

[32] D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, B. Zhao, and J. Kubi-
atowicz, “Oceanstore: An extremely wide-area storage system,”
in Proceedings of the Nine International Symposium on Archi-
tectural Support for Programming Languages and Operating Sys-
tems (ASPLOS IX), Nov. 2000.

[33] M. Luby, “LT codes,” in FOCS: IEEE Symposium on Founda-
tions of Computer Science (FOCS), 2002.

[34] A. Shokrollahi, “An introduction to low-density parity-check
codes,” Lecture Notes in Computer Science, vol. 2292, pp. 175–
197, 2002.

[35] J. A. Cooley, J. L. Mineweaser, L. D. Servi, and E. T. Tsung,
“Software-based erasure codes for scalable distributed storage,”
in 20th IEEE/11th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSS’03). IEEE, April 2003, p. 157.

[36] M. Sipser and D. Spielman, “Expander codes,” IEEE Trans-
actions on Information Theory (special issue devoted to coding
theory), pp. 1710–1722, 1996.

[37] D. Dubashi and D. Ranjan, “Balls and bins: A study in negative
dependence,” BRICS, 1996.

[38] T. E. Harris, “A lower bound for the critical probability in a
certain percolation process,” in Proc. Cam. Phil. Soc., vol. 56,
1960, pp. 13–20.

[39] S. M. Ross, Introduction to Probability Models, 8th ed. Harcourt
Publishers Ltd, Dec. 2002.

[40] B. A. Kozlov and I. A. Ushakov, Reliability Handbook. New
York: Holt, Rinehart and Winston Inc., 1970.

[41] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP
AutoRAID hierarchical storage system,” ACM Transactions on
Computer Systems, vol. 14, no. 1, pp. 108–136, Feb. 1996.

