
H-0210  November 23, 2003
Computer Science

IBM Research Report

LDGM Codes for Storage Systems

Ami Tavory, Vladimir Dreizin, Shmuel Gal, Meir Feder
IBM Research Division

Haifa Research Laboratory
Haifa 31905, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



1

LDGM Codes for Storage Systems
Ami Tavory, Vladimir Dreizin, Shmuel Gal, and Meir Feder

IBM’s Haifa Research Labs

Abstract—Networked storage-systems and communication
systems typically use codes to protect data from failures. As
reliability settings in these two types of systems are differ-
ent, codes developed for storage systems can out-perform
communication codes applied to storage systems. In this
work we show such codes, as well as their applications.

I. Introduction

To combat device failures, storage systems typically par-
tition data into groups, and protect each data group by
some form of an ECC (error-correcting code), e.g., RAID
(redundant array of independent disks) [1]. Coding the-
ory has been extensively studied in the context of com-
munications, where the important considerations are rate,
error-correction capabilities, and computational complex-
ity. Coding theory in the context of storage systems, might
also have other considerations.

In communication systems, all of the data group is re-
ceived by the receiver, regardless of error correction. Once
a data group has been encoded, it is usually not modified.
The bit error-probability of a data group is usually con-
sidered significant. There is little question on data-group
location, as once a group is encoded, it is simply transmit-
ted.

In storage systems, each data group has a recovery
penalty and update penalty, which affect the number of
storage devices actively involved in reliability-related op-
erations. The recovery penalty is the number of bits which
need be accessed to recover erased bits; The update penalty
is the number of bits which need be accessed when bits are
modified. The block error-probability of a data group is
considered more significant, as it usually determines the
MTTDL (mean time to data loss). Data-group location
among devices is dynamic, as data can be corrected and
migrated from failed devices to replacement devices (which
blurs the distinction between coding theory and algorithm
design).

In this work we study LDGM (low-density generation
matrix) codes which are powerful, efficient, low-complexity
codes, having low recovery and update penalties. We show
how these codes can be applied for storage systems in two
settings. We first show a simple application to large groups
of reference data, which are data rarely modified. We then
analyze a random sparing dynamic layout based on these
codes.

Related Work. Reliability in storage systems was origi-
nally studied in the context of small-capacity systems [14],
[15], [1], and in conjunction with performance improvement
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via parallelism, e.g., RAID. The schemes were later ex-
tended in some directions. Concatenated codes were stud-
ied, e.g., two-dimensional codes [16], and new RAID levels
[17]. Questions on coding-group placement within devices
were studied, e.g., various distributed striping and sparing
techniques [18], [19], [20], [21], [22], [23]. Differential cod-
ing based on data activity was studied in the context of
very large, concrete systems [27], [28].

Later work in storage reliability has considered larger-
capacity systems, and therefore a failure model taking into
account multiple simultaneous errors. Some excellent ana-
lytical work can be found in [29], [30], [31].

The most relevant communication codes for this work
are low-complexity codes, e.g., [9], in particular, capacity-
achieving codes, e.g., Turbo codes [10], and LDPC and
LDGM codes [11], [12], [13].

Definitions and Notations. We consider a system
composed of n storage devices. Each devices is composed
of c equal-sized blocks, and has a read/write bandwidth
of r blocks per time unit. We model the devices’ failure
laws as being distributed i.i.d. exponentially with mean 1

λ
[1]. The failure of a device corresponds to the erasure of
all data on it. Given a systematic erasure-code composed
of m data bits and α ·m check bits, we define the storage
rate as 1

1+α . The system MTTDL is the mean time to data
loss in the system.

For any p, we use [p] to denote the set {1, . . . , p}.
Paper Organization. The remainder of the paper is or-
ganized as follows. In Section II we describe the variant of
LDGM codes we propose for storage systems. In Section III
we discuss a simple application to reference data. In Sec-
tion IV we discuss an application to a random-placement
technique.

II. LDGM Codes for Storage-Systems

In this section we discuss a variation of LDGM (low-
density generation-matrix) codes. LDPC (low-density
parity-check) and LDGM codes were extensively studied
in the field of communication [33], [12], [11], [34], [35], due
to their low computational-complexity and nearly-optimal
rate. We propose a variation suitable for storage sys-
tems. The use of LDGM codes for storage was indepen-
dently proposed previously [27], [32], [28], [35], for reasons
of computational-complexity alone, and under the caveat
that they are probabilistic.

Consider two coding alternatives with equal storage
rates. In the first, all bits are encoded as a single group. In
the second, the bits are partitioned into groups, and each
group is coded. By the law of large numbers, it is clear
that the former alternative is superior in terms of loss prob-
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ability to the latter (whose loss probability approaches 1,
as the number of groups grows). The former alternative
might have other drawbacks. Reed-Solomon coding [7], for
example, would necessitate accessing nearly all bits for the
recovery of nearly any failure configuration. We are inter-
ested in codes for large data-groups which have a recovery
penalty determined by the number of errors which took
place, rather than being always proportional to the group
size.

The complementary question, of bounded update
penalty (defined similarly), was previously addressed in an
excellent paper [31], where an inverse relationship between
recovery locality and update locality was also shown.

We first give the relevant definitions of LDGM codes.
We consider a recursive LDGM code C composed of p lev-
els, C(1), . . . , C(p), each of which can be un-augmented or
augmented.

A un-augmented level of an LDGM code is described by
a Tanner-graph, which is a bipartite graph G = (V,E) =

(L
·⋃

R, E). Let m = |L|. Each node in L represents
a data bit; each node in R represents a parity bit. The
value of any node v is denoted by value (v). For any par-
ity node vr ∈ R, its left-neighbor set,

←−
V (vr) ⊆ L, is the

set
←−
V (vr) =

{
v` ∈ L | (v`, vr) ∈ E

}
. For any data node

v` ∈ L, its right-neighbor set,
−→
V

(
v`

)
, is defined similarly.

The parity bit corresponding to vr is set to be the XOR
(exclusive or) of the data bits corresponding to the nodes
in
←−
V (vr), i.e.,

value (vr) =
⊕

v`∈←−V (vr)

value
(
v`

)
. (1)

The edges in E thus represent parity constraints. The
graph is sparse, i.e., |E| = O (|L|) = O (|R|).

The average left-node and right-node degrees are

a` =

∑
v`∈L

∣∣∣−→V
(
v`

)∣∣∣
|L| , ar =

∑
vr∈R

∣∣∣←−V (vr)
∣∣∣

|R| , (2)

respectively. The fractions of edges whose left and right
node-degree is i, are

λi =

∣∣∣
{

e = (v`, vr) ∈ E |
∣∣∣−→V

(
v`

)∣∣∣ = i
}∣∣∣

|E| , (3)

ρi =

∣∣∣
{

e = (v`, vr) ∈ E |
∣∣∣←−V (vr)

∣∣∣ = i
}∣∣∣

|E| ,

respectively. These degrees are usually put into the form
of generating functions

λ(x) =
∞∑

i=1

λix
i−1, ρ(x) =

∞∑

i=1

ρix
i−1. (4)

Note that λ(x) and ρ(x) completely define the un-
augmented level.

Assume that all nodes in R are valid, and that some
nodes in L have failed. The recovery process is iterative.
In each step, a node vr ∈ R is chosen s.t. a single node v` ∈←−
V (vr) is failed. The value of v` is then corrected using (1).
Of course, the recovery process terminates prematurely if
such a node vr cannot be found. We denote by Pblock (L)
the block error-probability, which is the probability that
the recovery process terminates while some bits in L have
not been recovered. We denote by Pbit (L,α) the α-bit
error probability, which is the probability that the recovery
process terminates while an α fraction of bits in L have not
been recovered.

We will use the following theorem from [11].
Theorem 1: Assume a fraction of δ nodes from L origi-

nally fail.
1. In the family of codes for which

∀x∈(0,δ]δ · λ(1− ρ(1− x)) < x, (5)

a fraction of 1− o (1) of the codes have ∀α<1Pbit (L, α) =
o (e−αm).
2. In the family of codes for which (5) holds and λ1 = λ2 =
0, a fraction of 1 − o (1) of the codes have Pblock (L) =
o
(
e−Ω(m)

)
.

As seen in Theorem 1, only a code for which λ1 = λ2 = 0,
guarantees the recovery of all nodes. On the other hand,
it was shown in [11] that if λ1 = λ2 = 0, then the storage
rate is suboptimal. For this reason, an augmented level is
commonly used. In an augmented level, the nodes in L are
protected by both an LDGM code for which λ1 = λ2 = 0
does not hold, and by an expander-based code [36]. The
LDGM code corrects all but a negligible number of failed
nodes. The expander-based code corrects the rest. Note
also that it is assumed that all nodes in R are valid. This
is achieved by recursive encoding, obtaining p levels, up
to the point where some other erasure code (e.g., a Reed-
Solomon code) is used.

We first define a right-regular code which is a variation
of one in [13], and analyze its properties.

Definition 1: Let Ĉ(i) be an un-augmented level of an
LDGM code, defined by the generating functions:

λ̂(x) =
∑q̂−1

k=2

(
α̂
k

)
(−1)k+1xk

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

, (6)

ρ̂(x) = xâ−1,

where â ≥ 2 and q̂ ≥ 3, are arbitrary integers, and α̂ =
1/(â− 1). Let the average left-node degree be denoted by
â` (the average right-node degree is obviously â).

The following theorem can be proved, for the most part,
by modifying proofs from [11] and [13].

Theorem 2: Let

δ̂max =
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

1− α̂
. (7)

Then we have the following attributes of Ĉ(i):



3

1. Let δ denote the fraction of errors in L.

δ ≤ δ̂max ⇒ Pblock (L) = o
(
e−Ω(m)

)
. (8)

2. • If the number of failed data-nodes is |Lf | and the
number of accessed data-nodes is |La|, then

|La| ≤ â |Lf | . (9)

• Let Ĉ be a recursive LDGM code composed of Ĉ(i)s.
Then the expected number of accesses per single (data or
parity) failed-node recovery approaches â + 1.
3. • If the number of modified data-nodes is |Lu| ¿ |L|
and the number of accessed parity-nodes is |Ra|, then

|Ra| ≈ |R| − |R|
(

1− â` |Lu|
â |R|

)â

(10)

• Let Ĉ be a recursive LDGM code composed of Ĉ(i)s,
protecting n original data-bits. Let a single data-node be
modified. Then the ratio between the expected number of
accessed nodes and total number of redundant nodes is

o

(
1

nΩ(1)

)
, (11)

where n is the number of original data-bits.
4. The storage rate of the code is greater than

1−
2

(
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

)

1− 2
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

. (12)

5. The ratio between the fraction of errors corrected by
Ĉ(i), and the fraction corrected by an optimal code of the
storage rate in (12), is

1
2
− 1

qα̂+1(1− α̂)
. (13)

6. The computational complexity of encoding and decod-
ing is linear.

The following right-regular code is from [13].
Definition 2: Let C̃(i) be an un-augmented level of an

LDGM code, defined by the generating functions:

λ̃(x) =
α̃

∑q̃−1
k=1

(
α̃
k

)
(−1)k+1xk

α̃− q̃
(
α̃
q̃

)
(−1)q̃+1

, (14)

ρ̃(x) = xã−1,

where ã ≥ 2 and q̃ ≥ 2, are arbitrary integers, and α̃ = 1
ã−1 .

We now define a code that combines the previous two.
Definition 3: For some ε, let Ći = Ći(ε) be an LDGM

level defined by C̃i, and augmented by Ĉi coded at storage
rate

2ε
1
2 − 1

qα̂+1(1−α̂)

. (15)

By its construction, the code defined by Ći has similar
recovery and update penalties and computational complex-
ity, as the codes which compose it.

In terms of error correction, it works similarly to an
LDGM code augmented by an expander-based code [11].
Assume that at most

δ́max =
α̃− q̃

(
α̃
q̃

)
(−1)q̃+1

α̃
(16)

errors occurred. The probability that C̃i leaves more than
an ε fraction of nodes uncorrected, decreases exponentially
in n. By Theorem 2, Ĉi corrects these uncorrected bits
with high probability.

The ratio between the fraction of errors corrected by the
code and the fraction corrected by an optimal code of the
same storage rate is

1− 1
qα̃+1

1
1 + 2ε

1
2− 1

qα̂+1(1−α̂)

. (17)

III. Applications to Reference Data

The first simple application of the LDGM code is for pro-
tecting large amounts of reference data (i.e., data which is
not often updated). In this application, the bounded pro-
portionality of accessed bits per erased bits, comes into ef-
fect. E.g., consider a three-site reference-data system stor-
ing a copy of each datum in two of the three sites. While
this system can survive a disaster obliterating a single site,
or ongoing failures affecting some devices in all three sites,
the MTTDL can be shown to decrease linearly in the num-
ber of devices. Using an LDGM code to protect all devices,
would result in a system with similar performance, but with
MTTDL increasing in the number of devices. Using a clas-
sic Reed-Solomon code to protect all devices, would result
in a system whose devices would be engaged in much of the
time in recovery-related operations.

IV. Applications to Random Sparing

Data which are active (as opposed to reference data),
are not best protected by the method in Section IV; The
update penalty is too high. Commonly, active data-groups
are distributed in some manner over devices, in an attempt
to parallelize request handling [18], [19], [20], [21], [22], [23].
We consider a random-sparing scheme, apparently similar
to an independent OceanStore solution [27], but differing in
the random location-decision and use of bounded-penalty
codes.

We first describe the scheme.

Initially, there are n devices in the system. The data is
divided into data groups. For simplicity, we assume the
size of each group is ` blocks, of which `′ can be corrected.
We assume the code used has bounded recovery-locality.
Specifically, we assume that the ratio of accessed blocks
per failed blocks of a group, is at most k. We assume an
average fill-ratio of β, i.e., of the nc blocks in the system,
βnc are taken (and so the number of groups is βnc

` ). We
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place the restriction that a fraction of at most µ of all
operations can be dedicated to recovery operations.

We divide the operating time into rounds of duration ts,
and epochs, each consisting of s rounds. For simplicity, we
assume that sts = c

µr , i.e., each epoch lasts the time that
would be required to sequentially read a device from start
to end, normalized by µ.

Naturally, a request to a device can be blocked due to
its servicing previous requests. We assume that each de-
vice has a queue of read and write requests, which it ser-
vices subject to its bandwidth and constraint on fraction
of recovery-operations. Memory is required for write re-
quests in the queue, and for read requests which have been
completed but whose contents are still needed. We later
analyze the system-wide amount of such memory.

At some points, the scheme requires writing a (recovered)
group element to a one of the operating devices. The selec-
tion of the operating device is random, but differs from the
standard uniform selection between all operating devices
which are not full [27]. Rather, a uniform selection is made
between all operating devices (full or non-full), which does
not contain a member of the data group. If a full device
is selected, a reassignment takes place; A random element
from the device is chosen to be written someplace else, and
the process continues recursively. We explain the rationale
for this later.

The scheme is composed of two concurrent processes, a
contracting process and an expanding process, which we
describe next.

The contracting process works as follows. In each round,
the system observes the set of devices which have failed in
the round. For each data group, the system identifies the
members that are on failed devices. If these members can-
not be recovered, then data has been lost at this time. Oth-
erwise, the system randomly selects, for each failed mem-
ber, a subset of k devices out of all subsets of k devices
which can recover the element. For each of these devices,
it inserts into its queue a request to read the required el-
ement. If the system has enough elements to recover an
element, it recovers it, randomly selects a device, and in-
serts into its queue a request to write the element (possibly
triggering reassignment).

We term this a contracting process, since it attempts
to maintain the data groups into a continually contracting
group of devices (those which are still operating).

The expanding process works as follows. At the begin-
ning of each epoch, replacement devices are inserted into
the system. The number of replacement devices is deter-
mined s.t. the expected number of operating devices in
the end of the epoch will remain n. In each round, the
system chooses, for each replacement device, βc

`ts
random

data groups which are not represented in the device. For
each such group, it randomly selects a non-replacement de-
vice containing a member of the group, and inserts into its
queue a request to read the required element. When the
element has been read, the replacement devices writes it.

At the end of an epoch, all replacement devices which
have not failed during an epoch, become (new) operating
devices. For each element written to a replacement device
during an epoch, the system modifies its marked location.
It is now marked as being located in the (new) operating
device. Its old location is marked as empty.

We term this a contracting process, since it attempts
to maintain the data groups into a continually expanding
group of devices.

From the above description, it is clear that the number
of operating devices (originally n), and the average fill ra-
tio of each device (originally β), change with time. In an
arbitrary point in an epoch, we denote these sizes by n′

and β′, respectively.

The main result is the following theorem.
Theorem 3: Assume

` À log(n), (18)
c
(
1− β

(
1 + 2λsts + 2(λsts)2

)) À 1, (19)
1
λ

À c

µr
. (20)

For some δ 
 0, let the storage rate of each coding group
be

≈ 1− (1 + δ)λ
(

ts +
k + 1
µr

)
. (21)

Then the MTTDL of random sparing is
c

sµr

e


− 1

2 βnc
`

e
−λ(ts+ k+1

µr ) `δ2
2




. (22)

Following is the proof-outline of Theorem 3. We first
cite some known points on negatively-dependent random
variables. In Lemma 2 we bound the expectation of the
number of full devices in a round. In Lemma 3 we bound
the probability of a failure in a round, given the effective
number of failed devices in the round. In Lemma 4 we ap-
proximate the number of pending recovery-requests, using
Lemma 2. Using the number of pending requests, we ap-
proximate the effective number of failed devices in a round.
For brevity, we omit much of the proofs.

The analysis of random sparing is complicated by the fact
that the devices’ and groups’ states are not independent,
e.g., if some data-groups have very many representatives in
some set of devices, then the number of representatives of
other data-groups is probably not very large. This makes
it difficult to apply directly the Chernoff bound. For this
reason, we use in some places in the analysis, the notion of
negative dependence [37].

Definition 4: Let X =
{
x1, . . . , x|X|

}
be an ordered set

of random variables. The elements of X are negatively

dependent if for every disjoint index-sets I
·⋃

J ⊆ [|X|],
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and any functions f : R|I| → R and g : R|J| → R that
are both non-increasing or non-decreasing,

E [f (xi, i ∈ I) · g (xj , j ∈ J)] ≤ (23)
E [f (xi, i ∈ I)] ·E [g (xj , j ∈ J)] .

The following lemma contains useful properties of
negatively-associated random variables which we will use.
The statements of the lemma appear in [37], or are slight
variations of them.

Lemma 1: Let X be an ordered set of random variables.
Then
1. If f : R → R is a non-increasing or non-decreasing
function, then the Chernoff bound can be applied to∑

x∈X f (x).
2. If Y is a set of negatively-associated random variables,

and X and Y are independent, then X
·⋃

Y is negatively
dependent.

We first bound the expectation of the number of full de-
vices in a round. This in turn, serves to bind the expected
number of reassignments performed.

Lemma 2: At some round, let the fraction of operating
devices’ blocks be β′. Then, with high probability, the
fraction of full devices is at most


 2

β′
(

1
β′ − 1

)3

c




1
3

. (24)

Let the set of operating devices be S′. Let n′ = |S′|. For
some δ′ ≤ 1 and β′′ ≤ β′, let there be a subset S′′ ⊆ S′ of
devices s.t. |S′′| ≥ δ′n′, and ∀i∈[n′]′ |c[i]| ≥ β′′c. A straight-
forward calculation shows that the maximum fraction of
full devices is at most

δ ≤
β′n′c−δ′n′β′′c

c−β′′c

n′
=

β′ − δ′β′′

1− β′′
. (25)

From (25), to show that δ is small, we can show that

δ′
β′′≈β′≈ 1.

To do so, consider a new, different, process which in-
serts data groups into devices, subject to the constraint
that no two members of a group are in the same de-
vice, but with c → ∞, which means that reassignments
are not performed. Clearly, a device in the new process
has smaller chances of being relatively non-full than in
the original process. Define the vector w as the indica-
tor of c[i] containing less than (1 − ε)β′c elements, i.e.,
w[i] = I (c[i] ≤ (1− ε)β′c). By the Chernoff bound, it can
be shown that for i ∈ [n′],

P (w[i] = 1) ≤ e−
β′cε2

2 . (26)

Unfortunately, we cannot directly deduce from the low
probability of the event w[n′] = 1 in (26), the high-
probability of a low-fraction of entries of w being 1; The

elements of w are neither independent, nor are they neg-
atively dependent. Rather than using Lemma 1 directly,
we show the Chernoff bound applies, by applying the Har-
ris inequality in a slightly different way than used in [37].
Having done so, we obtain

β′ −
(
1− e−

β′cε2

2

)
β′(1− ε)

1− β′(1− ε)
(a)≈ (27)

e−
β′cε2

2 + ε
1
β′ − 1

(b)

≤


 2

β′
(

1
β′ − 1

)3

c




1
3

,

where (a) follows from neglecting the second order term

ε · e− β′cε2

2 , and (b) follows from taking ε =
(

2
β′c

) 1
3
.

We next bound the error probability in a round, assum-
ing that all groups failing up to the round’s start have been
recovered.

Lemma 3: At some round, let the number of functioning
devices be n′, and let the effective number of failed device
in the round be n′f . Assume that for some δ, each group
can be recovered if at most

`′ = (1 + δ)n′F
`

n′
(28)

blocks of it are lost.
Then the probability of failure in the round, is

e


− 1

2 βnc
`

e
−

n′
F

`
n′ ·δ

2

2




. (29)
The proof follows from the fact that given a set of de-

vices, the number of representatives of the various data
groups, are negatively dependent. This is achieved by the
insertion and reassignment methods.

A block is pending if it is waiting to be read from or
written to some device. The number of pending blocks
affects the effective number of failures per round.

Check what to do in next lemma regarding lamdda and xi

Lemma 4: Let m be the total number of system-wide
pending blocks in steady state. Then

m / n

(
λβcts +

e
Λ
Ξ − 1

2− e
Λ
Ξ

)
≈ nβcλ

(
ts +

k + 1
µr

)
, (30)

where

Λ ≈ λβc (k + 1) , Ξ = µr. (31)

The proof follows from queueing theory. The number of
pending requests of a device can be bound by an M/D/1
queue. The birth process of the queue is determined by the
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contracting process’s read and write requests, the expand-
ing process’s read requests, and by reassignment requests.
The first two can be shown to have approximately poisson
distribution, and the latter can be shown to be negligi-
ble. The death rate is determined by the bandwidth of
the device, and by the factor µ. The steady-state state
distribution can thus be found.

It can be shown that the queue lengths of the different de-
vices are negatively dependent. This is used to project the
steady-state average queue-length of the entire system.

V. Conclusions and Future Work

In this work we have presented and analyzed codes for
storage systems. We have shown that it is easy to con-
struct LDGM codes which have bounded recovery penalty.
We have shown algorithms which incorporate codes of
this type. Finding bounds and optimal codes subject to
bounded penalty constraints, is left to future research.
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