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Abstract— As time goes by, storage systems are required
to reliably store increasing amounts of data. Some earlier
solutions, designed for relatively small systems, are reaching
their limit. The problem of storage reliability is aggravated
by ongoing tendencies of (networked) storage systems, e.g.,
the growth gap between the capacity of each device and its
bandwidth, and the advent of mass-produced cheap devices
of decreasing reliability.

In this work we study bounds and solutions for very large
systems of high capacity devices. Using simple information-
theoretic bounds, we show the eventual necessity of a scal-
able hierarchical system. We next describe and analyze such
a system. The salient points of our system are protection
of data by their estimated access-intensity, unequal error-
protection by data importance, assumption of a lenient and
realistic disk-replacement policy, and competitive transition
of data between different levels by predicted access-intensity.

Keywords— storage, reliability, bounds, codes, unequal
error-protection, low-density generation-matrix, competi-
tive algorithms.

I. Introduction

Storage devices are prone to the failure of an entire de-
vice, the failure of some device blocks, and the corruption
of some device blocks. This causes storage systems to be
susceptible to data loss. To combat the failure of an en-
tire device or device blocks, a systematic MDS (maximum
distance separable) code [1], [2] is typically used. E.g., mir-
roring or RAID (redundant array of inexpensive devices)
level 5 [3], [4] are used to correct a single failure. To com-
bat data corruption, a combination of error detection and
erasure correction is typically used.

Much of the work up to date is relevant for devices with
limited capacity [3], [4], [5]. The growth gap between device
capacity and bandwidth, indicates a longer device-recovery
period. As this trend continues, the law of large numbers
indicates that concurrent multiple failures will become in-
creasingly common.

Consider a system composed of a large number of de-
vices, each with large capacity and limited bandwidth. We
show in Section II that such a group has the reliability be-
havior of a vector-communication channel with increasing
erasure probability, no feedback, and error memory. The
system has the same capacity of such a channel [6], [7],
and can be protected at most by an optimal code for such
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a channel [8], [9], [10], [11], [12], [13], [1], [14]. This sim-
ple reduction has some consequences: an upper bound on
the amount of reliable data as a function of device capacity
and failure statistics, a lower bound on the growth of device
numbers as a function of the amount of user data, a lower
bound on the growth of recovery activity as a function of
device capacity, a lower bound on the average coding-group
size as a function of the amount of user data, and a lower
bound on recovery activity as a function of the amount of
user data.

The preceding reduction has consequences for uniform
reliability-schemes. In any such scheme, an increase in
user-data amount must cause a decrease in access perfor-
mance.

In practice, data access requirements are not uniform;
data can be classified, by activity, into slowly changing
sets [15], [16], [17], [18], [19], [20], [21], [22], [23]. This
observation appeared in [24] as the rationale for a viable
alternative to configuring RAID levels. A two-level sys-
tem employing mirroring and RAID-5 was used. Data was
transited by access-intensity estimation between levels.

We extend this idea further. The lower-intensity level it-
self can degrade the system performance, since data must
constantly transit between the two levels. The above re-
duction can be applied to the lower level alone. Eventually,
the low-intensity level must become a bottleneck. It can be
similarly shown that a system employing any fixed number
of reliability schemes (e.g., two in the case of [24]), must
eventually suffer performance degradation.

We consider, therefore, a scalable hierarchy employing a
parameterized family of reliability schemes, as illustrated
in Figure 1. Exploiting the law of large numbers, the fail-
ure fraction of a large enough group of devices can be pre-
dicted accurately. Using this accurate prediction, we code
large groups of relatively inactive data using low redun-
dancy codes. Increasingly smaller groups of increasing ac-
tivity are simultaneously maintained. Groups of increasing
activity are protected using higher performance codes, at
the cost of higher redundancy.

The storage devices we consider store blocks. It is some-
times beneficial to group blocks into objects [25]. An ob-
ject is a collection of blocks considered related by its cre-
ator. The benefits of objects are twofold. The mapping of
blocks to objects gives the system an indication of usage
correlation. The granularity of objects allows a feasible-
complexity attachment of attributes to data.
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Fig. 1. A hierarchical storage system grouped by data access inten-
sity.

We use the former benefit when considering the tran-
sition policy between levels. We use the latter benefit to
attach to each object a UEP (unequal error-protection) at-
tribute [2], [26]. UEP is a coding scheme wherein data are
protected differentially according to user specification. We
discuss the importance of UEP in storage, in Sections III
and ??.

The hierarchical scheme requires a policy of data transi-
tion between levels. The importance and design of on-line
competitive algorithms for the case of a memory cache,
have been extensively studied [27], [28], [29], [30], [31],
[32], [33]. The reliability setting differs somewhat than the
memory cache setting. In Section III we discuss this and
show a solution adapted from [34].

In Section ?? we discuss a code used in the following
sections as a building block. We require a low-complexity
code which has a recovery locality property, i.e., a code
whose number of accessed members in recovery is propor-
tional to the number of failed members, and not to the
size of the coding group. We propose the use a variation
of LDGM (low-density generation-matrix) codes [8], [9],
[10], [11]. Independently, the use of standard LDGM codes
for storage was proposed [35], [36] for reasons of compu-
tational efficiency alone, and under the caveat that these
codes are probabilistic. We prove analytically and verify
by simulation that under a realistic device-failure assump-
tion, the recovery property of this variation is effectively
deterministic.

Reference data are characterized by rarity of updates.
This can be exploited for cost effective solutions. We show
in Section ??, that hierarchical large-group coding is ap-
plicable. Reference data can be further classified by ex-
pectation of read intensity. For reference data rarely read,

we show that the bounds from Subsection II can be ap-
proached. For reference data often read, we show that while
the data is well protected, read activity is not hindered by
ongoing recovery activity.

In Section ?? we deal with the bulk of non-reference
data. Typically, the data are striped, i.e., they are stored
on different devices protected in cross-device groups. Dif-
ferent schemes are used to utilize parallelism in both read-
ing and writing recovery activity [5], [37], [38], [39], [40],
[35], [36]. We use a hierarchy of random striping meant to
minimize failure-correlation between coding groups. Simi-
lar schemes were independently proposed in [35], [36]. To
the best of our knowledge the reliability analysis is first
performed here. This analysis allows to better determine
the required code redundancy.

At the extreme of the hierarchical system, highly-active
data are stored. Good performance in this level is cru-
cial for good overall system-performance. It is easy to
show that the only MDS codes which do not require read-
modify-update operations for data modifications are mir-
roring schemes. Previous work has analyzed this using
small-length Markov chains, modelling the deterministic
recovery-time by exponentially-distributed random vari-
ables [4], [41]. Multi-way mirroring is not well modelled
by Markov chains, as the model loses recovery parallelism.
The exponential random variable can attain values arbi-
trarily close to zero. We show new lower bounds and ap-
proximations on the system reliability for multi-way mir-
roring.

Much of the previous work has made use of strong
assumptions on error-detection latency and replacement-
device availability. Device-failure detection was assumed
to be immediate; replacement-device availability was as-
sumed to be unlimited. We consider a model in which de-
vice failure is detected with some latency, and replacement
devices are inserted into the system once in an epoch, which
is a pre-determined period of time. The large coding-group
and random-sparing schemes explicitly take epochs explic-
itly into account. The mirroring scheme assumes that re-
placement devices are available without limit. By keeping
the ratio of mirrored-data small, this does not contradict
the device-replacement epoch assumption.

A. Paper Layout

We continue the introduction with definitions and no-
tations in Subsection I-B, related work in Subsection I-C,
and our contribution in Subsection ??.

In Section II we show bounds on system reliability and
performance which prove the necessity of a scalable hier-
archy. In Section III we show a policy for transiting data
between levels. In Section ?? we describe a variation of
LDGM codes which we use as a building block in the fol-
lowing sections. In Section ?? we describe the reference-
data hierarchy, used for protecting rarely-updated data.
In Section ?? we describe the moderate-intensity hierar-
chy, used for protecting the bulk of non-reference data. In
Section VII we describe the high-intensity level, used for
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protecting the data estimated to be most active. For sim-
plicity, we describe Sections ??, ??, and VII in the context
of uniform error-protection and in a setting devoid of block-
corruption. In Section ?? we extend the solutions in these
two directions.

B. Definitions and Notations

Let C be a component of a system (e.g., a storage de-
vice, a group of devices, or the entire storage system). The
continuous random-variable describing the time to failure
of the component is tfC . The reliability of the component
at time t is [42]

RC (t) = P
(
tfC > t

)
. (1)

The CDF (cumulative distribution function) and PDF
(probability density function) of tfC are

FC(t) = 1−RC (t) , (2)

fc(t) = −dRC (t)
d t

, (3)

respectively. Similarly, the conditional reliability is

RC (t|t′) = P
(
tfC > t|tfC > t′

)
. (4)

We consider a system S storage devices. Each device is
composed of c blocks containing b consecutive bits, and has
a read/write bandwidth of r blocks per time unit.

The devices have i.i.d. (independently and identically
distributed) entire-device failure laws. An entire device
fails with the exponential PDF e−λt. A block erasure is
a detected corrupted block, and occurs with probability
PE . A block substitution is an undetected corrupt block,
and occurs with probability PS . If a block is substituted,
we assume each bit has been flipped with probability Ps.
E.g., Ps = 1

2 corresponds to a random earlier version of
block contents.

An entire-device failure is detected with latency td. In
some cases, we assume detection rounds of length td,
wherein at the start of each round, the devices which have
failed throughout the last round are detected. The for-
mer model can easily be modelled by the latter, and vice
versa. The failure-detection assumption differs from some
classical works on reliability, (e.g., [42]).

The amount of user data stored in the entire system is
cus. The MTTF (mean time to failure) of a component C

is the mean of tfC . The MTTDL (mean time to data loss)
of a component C is the mean time until the failure of a
component in C will cause data within it to be irreversibly
lost. The system MTTDL is the MTTDL of S, the entire
system. For uniform error-protection, let ν be the ratio
between the system MTTDL and the time to sequentially
read a single device. We consider systems in which the
system MTTDL (equivalently ν) can be made arbitrarily
high as cus and |S| grow large. The storage rate of the
system is ρ = cus

|S|·c ≤ 1 (some of the related work term

this the storage efficiency). The maximal amount of data
which can be stored with such ν is cR

max (S) = cR
max (S, ν).

For unequal error-protection, we consider d priority levels
with corresponding ratios ν1, . . . , νd. For any object e, we
denote its priority by µ (e) ∈ [d].

An IO (input output (operation)) is the act of reading
from or writing to a storage device. A user IO is an IO di-
rectly servicing a user’s request. A recovery IO is a failure-
triggered IO serving to recover information from a failed
device or block. An update IO is an IO used to protect
data against possible failure.

C. Related Work

Reliability has been extensively studied for communica-
tion channels, most relevantly the erasure channel and the
binary symmetric channel [13], [43]. Bounds on channel ca-
pacity were found for uniform error-protection [6] and un-
equal error protection [2], [26]. Well known code-families
for uniform error-protection are Hamming codes [1] and
BCH codes [1] with some of their variants, e.g., Reed-
Solomon codes [44]. More recently, low-complexity codes
have been studied [12], in particular, capacity achieving
codes e.g., Turbo codes [45], LDPC, and LDGM codes [10],
[9], [46].

Reliability in storage systems was originally studied in
the context of small-capacity systems [47], [3], [4], and
in conjunction with performance improvement via paral-
lelism, e.g., RAID. The schemes were later extended in
some directions. Concatenated codes were studied, e.g.,
two-dimensional codes [48], and new RAID levels [41].
Questions on coding-group placement within devices were
studied, e.g., various distributed striping and sparing tech-
niques [49], [40], [39], [38], [50], [37]). Effects of physical
device-topologies were studied [51]. Storage reliability via
coding was extend in the direction of disaster recovery as
well [52].

The important idea of hierarchical protection of data
based on data activity was shown in work on HP-
AutoRAID [53], a work to which ours is an extension. Dif-
ferential coding based on data activity was studied in the
context of very large, concrete systems [35], [36], [54].

Later work in storage reliability has considered larger-
capacity systems, and therefore a failure model taking into
account multiple simultaneous errors. Some excellent an-
alytical work can be found in [55], [56], [57]. New work
oriented toward overall system design and implementation
and the conjunction of several system aspects (e.g., secu-
rity, load-balancing, and meta-data location) can be found
in a series of papers on OceanStore [35], [36], [54].

Our contributions are in bounding the capabilities of
very large-capacity storage systems, and showing solutions
for them, focusing primarily on the growth gap between
device capacity and bandwidth.

We show an upper bound on the amount of data which
can be stored reliably as a function of the number of de-
vices and single-device attributes. Using this upper bound,
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we show lower bounds on the number of storage devices as
a function of system user-data, and lower bounds on the
number of recovery and update IOs as a function of user
data. Using this, we show the necessity of a scalable hier-
archy, i.e., a hierarchical system in which the number of
levels increases with the number of user data.

We show and analyze a hierarchical reliability system.
We modify a competitive algorithm for data transition be-
tween levels. We develop a variation of LDGM codes which
has asymptotically optimal storage-rate and good recovery-
locality. We show a capacity-achieving system for reference
data. We develop and analyze a random-sparing scheme.
We perform new analysis on multi-way mirroring.

II. Bounds

In this section we deal with bounds on storage-system
reliability as the devices’ capacity grows. These bounds are
absolute limits, in the sense that they cannot be exceeded
by any choice of codes, disk-replacement policy, or data-
migration policy. The results in this section justify the
necessity of a hierarchical reliability system. The bounds
in this section hold even for cases in which PE = PS = 0.

The section is organized as follows. In Subsection II-A
we show an upper bound on system reliability, by reducing
the problem to one of communication over a faulty channel.
Using the upper bound, we show lower bounds on cost and
performance. In Subsections II-B we show lower bounds on
the number of devices and on recovery activity. In Subsec-
tion II-C we show lower bounds on coding group-size and
update activity.

A. Upper Bound on System Reliability

In this subsection we show an upper bound on system
reliability.

We will use the following definition in the expression of
the system reliability. Let S be a system suffering of device
failures, block erasures, and block substitutions.

Definition 1: (Effective Volume and Block Capacity)
The effective volume is defined as

ĉ (S) = (5)

r max
c1,...,cn

{
n∑

i=1

ci | ∃C1,...,CnP

(
n∧

i=1

tfCi
≥ ci

)
≥ 1

ν

}
.

The block capacity is defined as

b̂ (S) = (6)
b (1− PE) + H (PE) + PE log (PE) +

b∑

i=1

((
2b

i

)
(1− PE)PSP i

s (1− Ps)
b−i ·

log
((

2b

i

)
(1− PE) PSP i

s (1− Ps)
b−i

))
+

(1− PE)
(
PS (1− Ps)

b + (1− PS)
)
·

log
(
(1− PE)

(
PS (1− Ps)

b + (1− PS)
))

.

The main result of the subsection is that regardless of
coding techniques, data migration policies, or device re-
placement policies, the system reliability is determined by
the sizes in Definition 1.

Theorem 1: For any system S,

cR
max (S) ≤ ĉ (S) b̂ (S) . (7)

The proof follows almost immediately from the data-
processing inequality and Shannon’s channel-capacity the-
orem[13], [7]. We write it in some detail for two reasons.
The proof emphasizes the limit of replacement devices’ con-
tribution to the system reliability. The nature of a capacity
approaching solution (see Subsection ??) becomes appar-
ent from the proof.

In the remainder of this subsection, we consider epochs,
each taking c

r time. An epoch is divided into steps of dura-
tion 1

r . We consider an epoch starting at time 1. We define
the following sets of devices:

X = set of system devices at time 1, (8)

Y = set of replacement devices inserted by time
c

r
.

We also define the following sets of blocks:

X(i) = set of distinct X blocks read at time i, (9)

X̂(i) = set of distinct X blocks written at time i,

Y (i) = set of distinct Y blocks written at time i,

Xus = set of user data at time 1,

Xr = set of recovered data at time
c

r
.

For any k′ and k′′, we define the sets

〈X(i)〉k′′i=k′ = (10)
{X(i) | i = k′, k′ + 1, . . . , k′′} ,

〈
X(i), X̂(i), Y (i)

〉k′′

i=k′
=

{
X(i), X̂(i), Y (i) | i = k′, k′ + 1, . . . , k′′

}
.

The following lemma shows that the information perti-
nent for recovery, written at step j, is contained in the
information read and written up to j, and the information
read in j.

Lemma 1: For any1 j

H

(
Xus| 〈X(i)〉

c
r

i= c
r−j ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−1

i=1

)
= (11)

H

(
Xus| 〈X(i)〉

c
r

i= c
r−j−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−2

i=1

)
.

1We use H(·) to denote the binary-entropy function
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Proof: By the definition of conditional entropy,

H

(
Xus| 〈X(i)〉

c
r

i= c
r−j ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−1

i=1

)
= (12)

H

(
Xus, 〈X(i)〉

c
r

i= c
r−j−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−2

i=1

)

+H
((

X̂(j), Y (j)
)
|

Xus, 〈X(i)〉
c
r

i= c
r−j−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−2

i=1

)

−H

(
〈X(i)〉

c
r

i= c
r−j−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−2

i=1

)

−H
((

X̂(j), Y (j)
)
|

〈X(i)〉
c
r

i= c
r−j−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−2

i=1

)
.

Note that at time j, all information written to devices in
X or Y, is a function of all the information which had been
read up to this point. Therefore,

H
((

X̂(j), Y (j)
)
| (13)

Xus, 〈X(i)〉
c
r

i= c
r−j−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−2

i=1

)
=

H
((

X̂(j), Y (j)
)
|

〈X(i)〉
c
r

i= c
r−j−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−2

i=1

)
=

0.

Inserting (13) into (12), we obtain

H

(
Xus| 〈X(i)〉

c
r

i= c
r−j ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−1

i=1

)
= (14)

H

(
Xus, 〈X(i)〉

c
r

i= c
r−j−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−2

i=1

)

−H

(
〈X(i)〉

c
r

i= c
r−j−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−2

i=1

)

= H

(
Xus| 〈X(i)〉

c
r

i= c
r−j−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−2

i=1

)
.

The lemma now follows from the definition of conditional
entropy.

In the following, we write H (·|·, c′S) to denote the condi-
tional entropy when a total of c′S distinct blocks were read
from X during the epoch.

Lemma 2: For any c′S ,

H (Xus|Xr, c
′
S) ≤ c′S b̂ (S) . (15)

Proof: Using the data processing inequality and

Lemma 1, we have,

H (Xus|Xr, c
′
S) (16)

(a)

≤ H

(
Xus|

〈
X(i), X̂(i), Y (i)

〉 c
r

i=1
, c′S

)

(b)
= H

(
Xus|X(

c

r
),

〈
X(i), X̂(i), Y (i)

〉 c
r−1

i=1
, c′S

)

(c)
= H

(
Xus| 〈X(i)〉

c
r

i= c
r−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−2

i=1
, c′S

)

...
(d)
= H

(
Xus| 〈X(i)〉

c
r

i= c
r−j ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−1

i=1
, c′S

)

...

(e)
= H


Xus|

c
r⋃

i=1

X(i), c′S




(f)

≤ c′sb̂ (S) .

In the above, inequality (a) follows from the fact that

Xus →
〈
X(i), X̂(i), Y (i)

〉 c
r

i=1
→ Xr is a Markov chain, and

so the data processing inequality applies, and (b) through
(e) follow from a repeated application of Lemma 1.

Inequality (f) follows from Shannon’s channel-capacity
theorem. Assume a sender sends consecutive blocks over
a communication channel suffering from the given block-
erasure and block-substitution probabilities. Let B =
{s1, . . . s2b} denote the set of 2b possibilities of each block,
and let D(si, sj) denote the Hamming distance between si

and si. The corresponding channel is shown in Figure 2,
where Se stands for an erasure. The transition matrix of a
block, is the 2b × (2b + 1) matrix




r
π2 (r)
...
πb (r)


 , (17)

where

P (se | s1) = PE , (18)

P (si | s1) = PS(1− PE)PD(si,s1)
s (1− Ps)

b−D(si,s1) ,

and

r =
[
p1,1, p1,2, . . . , p1,2b−1, p1,2b , , p1,e

]
, (19)

and πi (r) (i = 2, . . . , b ) are vectors whose entries form a
permutation of the entries of r. Inequality (f) follows by
using the Kuhn-Tucker [58] rule.

Theorem 1 now follows from Lemma 2. By Definition 1,
if c′S  ĉS , then with probability 1

ν , data is lost. It follows
that the expected number of epochs until data loss is ν.
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Fig. 2. Channel corresponding to a single block.

Fig. 3. Effective capacity of a group of devices.

The proof of Theorem 1 gives the following interpreta-
tion to the amount of data which can be reliably stored.
In Figure 3 we see a diagram of devices read concurrently
from bottom to top. A greyed rectangle indicates that the
device had failed prior to reading the block. A crossed-out
rectangle indicates a substituted block. A partially crossed-
out rectangle indicates an erased block. The proof shows
that the amount of reliable data in the system is deter-
mined by 〈X(i)〉

c
r
i=1. That is, the amount of reliable data

is equal to that which can be sent over a (non-memoryless)
channel accommodating a block per device per time unit,
with substitution probability determined by PS , and era-
sure probability (with error-memory) determined by PE

and λ.

To achieve the system capacity, each block read should
effectively contain user data. For the system to remain re-
liable, this should be the case for the next epoch as well.
It follows that 〈Y (i)〉k′′i=k′ is the only set of blocks which
need be written during an epoch. The non-greyed rectan-
gles form a shape with a given area. To achieve capacity,
all realistic shapes with the given area should suffice to re-
cover the user data. For a large number of devices, this is
not difficult. We return to this point in Subsection ??.
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Fig. 4. A skip-list and a storage-device lifeline.

B. Increase in Storage-Device Number

In this subsection we show that an unlimited growth in
cus while keeping n constant, cannot be sustained by an
unlimited increase in c, since cR

max (S) grows non-negligibly
only up to a limited value of c. Rather, an unlimited growth
in cus can only be sustained by a corresponding increase
in n. We stress that a solution scalable in cus must be
scalable in n.

It was shown in Subsection II-A that the amount of data
which can be stored reliably is bounded by 〈X(i)〉

c
r
i=1. Con-

ceptually, as c grow indefinitely, so can 〈X(i)〉
c
r
i=1. Given a

realistic failure model, this is not the case. This is similar
to the number of levels in a skip list [59], shown in diagram
(a) of Figure 4. In a skip-list the number of non-negligible
levels is effectively limited by the number of items. Simi-
larly, the maximal time at which a non-negligible number
devices still function, is not unlimited, as shown in diagram
(b) of Figure 4.

Theorem 2: for a system S with n devices, the effective
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capacity is bounded by

cR
max (S) ≤ (20)

2nr


1−

(
1
2

) c
r

ln(2)
λ


 (1 + o(1))b̂ (S)

c→∞−→ 2nrb̂ (S) (1 + o(1)).

Proof: By the properties of the exponential distribu-
tion,

RC

(
t +

ln(2)
λ

| t
)
≤ 1

2
. (21)

By the law of large number, with probability one,
∣∣∣∣
{

C ∈ S | tC ≥ i
ln(2)

λ

}∣∣∣∣ ≤ (22)

1
2i−1

n(1 + o(1)),

and so, with probability one,

〈X(i)〉
c
r
i=1 ≤ (23)

r

c
r

ln(2)
λ∑

i=0

∣∣∣∣
{

C ∈ S | tC ≥ i
ln(2)

λ

}∣∣∣∣

2nr


1−

(
1
2

) c
r

ln(2)
λ


 (1 + o(1)).

The theorem follows by combining the above with Theorem
1.

The same result can be shown by considering the aver-
age number of recovery operations. For a fixed number of
devices, an increase in c causes an increase in recovery ac-
tivity. When the average recovery activity is higher than
afforded by the devices, data is lost.

Theorem 3: Let the n devices contain ρnc blocks of user
data. The average number of recovery IOs per storage de-
vice per time unit is at least

ρc(1− o(1)). (24)
Proof: Fix ρ′ � ρ. Let t′ = (1−ρ′)·n

λ . By the Poisson
approximation, at time t′, the number of original devices
which have not failed is ρ′n(1 + o(1)). As shown in Sub-
section II-A, the effective volume of the original devices at
t′ is only

〈X(i)〉t
′+1+ c

r

i=t′ ≤ ρ′nc(1 + o(1)). (25)

It follows that up to time t′, the average number of recovery
IOs per original storage device per time unit is at least

(ρ− ρ′)cn(1− o(1))
n

ρ′→0−→ ρc(1− o(1)). (26)

C. Disjoint Coding Groups and Increase in Update IOs

For performance reasons, the blocks in a storage system
are usually not coded en-mass in a single coding group.
Rather, the blocks are partitioned into smaller groups,
and the blocks of each group are protected by some code
(e.g., in a mirroring scheme, the blocks are partitioned into
groups of size 2). In Subsection II-B we showed the neces-
sity of an increase in n as cus increases. In this subsection,
we show that there are no k and k′, with the property that
as n increases, the data can be protected with high system-
MTTDL, in coding groups each of size k and resiliency k′.

Theorem 4: Let S be a system in which the data is pro-
tected in the following manner. The data is divided into
(at most cn

k ) groups, each of size k and resiliency k′. Let
the fraction of blocks used in S be β. Then the system
MTTDL is bounded by

td


1 +

1

1− p

βn− k
c−1

k(k−1)
r


 n→∞−→ td, (27)

where

pr = 1−
k′∑

i=0

(
k

i

) (
1− e−λtd

)i (
e−λtd

)k−i
. (28)

Proof: Let S = S1

·⋃
. . .

·⋃
Sm be a system be com-

posed of m sub-systems, each containing k devices. Let the
data in each subs-system be protected by coding groups
each of size k and resiliency k′. In a period of failure detec-
tion td, it is readily seen that the probability of all groups
not suffering data loss is a Bernoulli process with m trials,
and so the MTTDL of S′ is

td

(
1 +

1
1− pm

r

)
. (29)

Now consider the system S in the theorem. We show
that this system inherently contains a subsystem similar
to S′. Let S′1 be a set of k devices containing at least
one coding group in its entirely. In S \ S′1, we consider
the member of any coding group with members in S′1 to
be protected (which clearly does not decrease the system
MTTDL). There still remain βnc− (c− 1)k(k − 1) unpro-
tected blocks in S \ S′1. Let S′2 be a set of k devices from
S \ S′1, containing at least one unprotected coding group
in its entirely, and so forth. It is possible to continue to
create the group S′i as long as

βnc− i(c− 1)k(k − 1) ≥ k. (30)

It follows that there are at least

m =
βn− k

c−1

k(k − 1)
(31)

such groups. Inserting into (29) we prove the theorem.

It was observed in [57] that groups with resiliency k′ re-
quire k′ updates per write; if this were not the case, a write,
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followed by the k′′ � k′ updates, would be susceptible to
k′′+1 failures. Combining this with Theorem 4, we obtain
the following.

Theorem 5: For any fixed k′, ρ and large enough n, the
number of IO updates per modification is larger than k′.

III. Data Transition between Levels

A hierarchical reliability scheme composed of increasing-
sized levels requires a data transition policy. Ideally, the
high performance (and smaller) levels should contain the
data required by the users. The challenges here are simi-
lar to those of hierarchical-memory data-caching, but are
complicated by what we will show are time changing costs.

In this section we show a data transition policy. The set-
ting we assume is relatively restricted. We consider a two-
level system, in which data are accessed only via the higher
level. We consider policies in which blocks are transferred
in entire-object granularity, only entire-object modification
takes place, and objects are evicted to a lower level consec-
utively and to uncorrelated lower-level placements. This
corresponds to a system in which inter-object correlation
is total, and cross-object correlation is non-existent. We
defer a fuller solution to future work.

The section is organized as follows. In Subsection III-A
we define precisely the transition costs. In Subsection III-
B we show a competitive migration policy. In Subsection
III-C we analyze some common solutions in use.

A. Performance Costs in Hierarchy levels

We first precisely define the transition costs and compar-
ison measures.

We consider two levels composed of sets of blocks, S0 and
S1. They are the higher and lower levels, respectively. The
size S0 is |S0| = k; the size of S1 obeys |S1| À |S0|. The two
levels contain objects. We denote the set of objects they
hold by L0 and L1, respectively. In general, L0

⋂
L1 6= ∅.

The policy handles a sequence of M requests ρ =
[ρ1, . . . , ρM ]. Each request ρj is a pair (ej , tj). The en-
try ej identifies the pertinent object. The entry tj is either
R or W , depending on whether the request is of type read
or type write.

The cost of each operation depends on objects’ locations
and modification state. The cost incurred by a request
(ej , R) is 0 if ej ∈ L0; otherwise, the cost is denoted by
fR

ej
. If an unmodified object e is deleted from L0, then the

deletion cost is 0; otherwise the cost is denoted by fW
e .

The number of blocks required by an unmodified e ∈ L0 is
denoted by

∣∣eR
∣∣. If the object is modified, an additional∣∣eW

∣∣ blocks of redundancy are required. We deal with fixed
rate codes, and so for any two objects ei and ej of the same
priority,

∣∣eR
i

∣∣
∣∣eR

i

∣∣ +
∣∣eW

i

∣∣ =

∣∣eR
j

∣∣
∣∣eR

j

∣∣ +
∣∣eW

j

∣∣ , (32)

regardless of the sizes of ei and ej .

The data transition problem above has much similarity
to the problem of memory-hierarchy online paging.

It is well known [33] that in such settings, absolute per-
formance measures for an algorithm are meaningless. We
briefly review two meaningful comparison measures.

Let A be an online paging algorithm, i.e., its response to
ρ[j] does not depend on ρ[j′] for any j′  j. Let A(k) de-
note an instance of it for which |L0| = k. E.g., A is the LRU
(least recently used) algorithm, and A(k) is LRU maintain-
ing k items. We denote the cost incurred by A(k) on ρ by
fA(k)

(
ρ
)
. To assess how relatively good is fA(k)

(
ρ
)
, we

require the following two costs [34]:
• The off-line cost- let O denote the optimal off-line algo-
rithm (i.e., with advance knowledge of ρ). Let O(h) denote
its instance when |L0| = h (h ≤ k). The cost incurred by
this instance due to ρ, is the off-line cost, fO(h)

(
ρ
)
.

• The un-cached cost- let fρ[j]=(ej ,tj) denote the un-cached
cost of the jth operation, i.e.,

fρ[j] =

{
feR

j
, tj = R

feW
j

, tj = W
. (33)

The un-cached cost of the sequence is
∑M

i=1 fρ[j].

The following definition [28] defines the competitiveness
of an on-line algorithm relative to an optimal off-line algo-
rithm.

Definition 2: An algorithm A is α = α(h, k) competi-
tive, if there is a constant γ = γ(h, k), such that for any
request sequence ρ,

E
[
fA(k)

(
ρ
)] ≤ α · fO(h)

(
ρ
)

+ γ. (34)

The competitiveness coefficient of A, αA,h,k, is the infini-
mum of any such α which satisfies (34), i.e.,

αA,h,k = (35)

inf
α
∃γ=γ(h,k)∀ρE

[
fA(k)

(
ρ
)] ≤ α · fO(h)

(
ρ
)

+ γ.

In the above, our definition differs from that of [34], by
the additive γ element.

Subsequently, a modified definition of competitiveness,
loose competitiveness [29], [34], was created. The new ver-
sion has advantages in its not allowing ρ to be too closely
tailored to k, and limiting the effect of any ρ for which the
absolute cost is too low. The following is a modified version
of loose competitiveness.

Definition 3: An algorithm A is α̂ = α̂(ε, δ, k)-loosely-
competitive, if there is a constant γ = γ(k), such that
for any request sequence ρ, at least (1 − δ)k of the values
k′ ∈ [k] satisfy

E
[
fA(k′) (

ρ
)] ≤ max



α · fO(k′) (

ρ
)
, ε ·

∑
ρ∈ρ

f (ρ)



 + γ. (36)
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The (ε, δ, k)-loose-competitiveness coefficient of A, α̂A,ε,δ,k,
is the infinimum of any such α̂ which satisfies (36), i.e.,

α̂A,ε,δ,k = (37)
inf
α
∃γ=γ(k)∀ρ∃K′∈[(]k),|(|K′)≥(1−δ)·k

k′ ⊆ K ′ ⇒

E
[
fA(k′) (

ρ
)] ≤ max



α · fO(k′) (

ρ
)
, ε ·

∑
ρ∈ρ

f (ρ)



 + γ.

Definition 4: An algorithm A is (ε, δ)-loosely α̃-
competitive, if for any k, except for a finite number of ks,
A is α̂ = α̂(ε, δ, k)-loosely competitive, for α̂ ≤ α̃.

In the above, our definition differs from that of [34], by
requiring an algorithm to be α̂(ε, δ, k)-loosely competitive
for almost all k.

Competitive paging algorithms have previously been
studied for the case of multi-level memory hierarchies. This
case differs from ours. In a memory hierarchy, the size an
object requiring being a constant; in our case modified ob-
jects require redundancy. In a memory hierarchy, the cost
is, in general, dominated by object retrieval; in our case,
modified objects incur an eviction cost, while unmodified
objects do not. This is aggravated by UEP. For the memory
hierarchy case, algorithms for uniform-size uniform-cost ob-
jects were studied [27], [28], [30], algorithms for uniform-
size arbitrary-cost objects were studied [32], [30], and al-
gorithms for arbitrary-size and differing-costs were studied
[60], [31], [34].

B. A Competitive Algorithm

In this subsection we describe M-Landlord, which is a
modification of an algorithm from [34]. The act of writing
modified data to a lower level is known as destage; the
act of deleting unmodified from a higher level is known
as demote. The algorithm works performing a continuing
series of destage and demote operations, based on a space-
per-cost object assessment. For brevity, we will refer in
equations to this algorithm as LLM.

The main result we prove is the following.
Theorem 6: Fix ε and δ, and let δ′  0 be an arbitrarily

small constant.
1. LLM is (ε, δ + δ′)-loosely 1−ln(ε)

δ e-competitive.
2. LLM has computational complexity O (1) for operations
which do not access the lower level, and computational
complexity O (log(k)), for operations which do.

The subsection is organized as follows. In Sub-subsection
III-B.1 we describe the algorithm. In Sub-subsection III-
B.2 we study a related hierarchical-memory algorithm,
in order to analyze the LLM competitiveness. In Sub-
subsection III-B.3 we prove the loose-competitiveness and
computational-complexity properties of LLM.

B.1 M-Landlord

In this sub-subsection we describe the algorithm LLM.
This is a modification of the Landlord algorithm [34], ex-
tended to the case where some objects are modified, and

with lower computational complexity (at a cost to the gen-
erality of the original algorithm). Essentially, the algorithm
maintains a space-per-cost estimate of each object. Based
on this ratio, it decides on the next destage or demote op-
eration used for freeing space. Algorithms 1 and 2 show
the algorithm in pseudo-code.

The algorithm maintains the following global variable
and array:

LL = set of objects in L0, (38)
c = a real value describing “credit history”.

The algorithm maintains the following object-specific ar-
rays and heap-based PQ (priority queues) [58]. Let e ∈ LL
be a an object, then:

m = an array s.t. m(e) = T ⇔ e is modified, (39)
c = an array s.t. c(e) = object credit, ,

HR = a PQ s.t. m[e] = F ⇔ e ∈ Hr,

HW
i = a PQ s.t. m[e] = T

∧
µ (e) = i ⇔ e ∈ HW

i .

An object e is ordered within its PQ by c[e]. Initially, c = 0.

Algorithm 1 shows a high-level description of the algo-
rithm. Let ej be the object accessed at step j. If ej need
not be retrieved and is not newly modified, no state up-
dates need be done (lines 1 to 5). Space is allocated (by
calling Algorithm 2), and the object’s queue membership
is updated (lines 6 to 11). The object is retrieved if it is
not already in place (lines 12 to 20). A modification to
the object results in updating the internal data structures
(lines 21 to 26).

In all cases, the object’s credit, c[ej ] is updated according
to the credit history c and the operation type tj . The ob-
ject’s cost-per-space is efficiently stored relative to objects
in its class, by means of the appropriate PQ.

The algorithm maintains the following invariants on ob-
jects’ credit,

Invariant 1:

∀e∈LL

(
c [e] ≤ fR

e

)∨ (
m [e] = T

∧
c [e] ≤ fW

e

)
, (40)

∀e∈LLc [e] ≥ 0,
and the following invariants on object PQs’ location,

Invariant 2:

∀e∈LL∀i∈[d]e ∈ HR ⇒ e /∈ HW
i , (41)

∀e∈LL∀i∈[d]e ∈ HW
i ⇒ e /∈ HR

∧
e /∈ Hw

j (j 6= i).
Algorithm 2 shows how space is cleared. First, the space

needed for eviction is calculated (lines 1 to 6). The algo-
rithm loops until at least that amount has been evicted
(lines 7 to 31). First, the credit history is updated (lines 9
to 16). By comparing an objects’ credit to the credit his-
tory, some objects are possibly demoted (lines 22 to 21),
and for each of the priorities, some are possibly destaged
(lines 22 to 30).
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Algorithm 1 M-Landlord(ρ[j])

Handles a request ρ[j] =
(ej , tj).
1: /* Check if ρ[j] does not modify objects’ state.*/
2: if ej ∈ LL

∧
(tj = W ⇒ m [ej ] = T) then

3: Access ej

4: return
5: end if
6: /* Evict space needed */
7: M-Landlord-Evict(ρ[j])
8: /* Remove modified object from read PQ.*/
9: if ej ∈ LL

∧
tj = W then

10: PQ-Remove(HR, ej)
11: end if
12: /* Check if object should be retrieved.*/
13: if ej /∈ LL then
14: Retrieve ej

15: LL ← LL
·⋃ {ej}

16: if tj = R then

17: c [ej ] ← c +
fR

ej

|eR
j |

18: PQ-Insert(HR, ej)
19: end if
20: end if
21: /* Check if object must be marked as modified.*/
22: if tj = W then

23: c [ej ] ← c

(
1 + |eR

j |
|eW

j |
)

+
fW

ej

|eW
j |

24: m [ej ] ← T
25: PQ-Insert(HW

µ(ej)
, ej)

26: end if
27: Access ej

B.2 RW-Landlord

In this subsection we describe the algorithm RW-
Landlord, which we will use for the competitiveness anal-
ysis of M-Landlord. It is difficult to analyze M-Landlord
directly, because of the time-varying costs and sizes of ob-
jects. For brevity in mathematical expressions, we will in-
terchange RW-Landlord with LLRW .

RW-Landlord operates in a standard caching-problem
setting (i.e., without object modification). We relate the
setting of RW-Landlord to that of M-Landlord as follows.
For any object e in M-Landlord, we consider a read object
eR, and a write object eW . The retrieval cost of eR is feR ,
the retrieval cost of e; the retrieval cost of eW is feW , the
eviction cost of e. The size of eR is the size of e; the size
of eW is the size of the redundancy of e. We conceptually
partition LL, the cache of LLRW , into sub-caches LLR and
LLW , containing read and write objects respectively. I.e.,

LL = LLR
·⋃

LLW , where

eR ∈ LL ⇒ eR ∈ LLR, (42)
eW ∈ LL ⇒ eW ∈ LLW .

Algorithm 2 M-Landlord-Evict(ρ[j])

Clears space for a request ρ[j] =
(ej , tj).
Require: ej /∈ LL

∨
(tj = W

∧
m [ej ] = F)

1: /* s indicates the space which need be cleared.*/
2: s ← (tj = R)?

∣∣eR
j

∣∣ :
∣∣eW

j

∣∣
3: /* Check if modifying an unmodified existing object.*/
4: if tj = W

∧
ej ∈ LL

∧
m[eJ ] = F then

5: s ← s−
∣∣eR

j

∣∣
6: end if
7: /* Loop until enough space has been cleared.*/
8: while |LL| ≥ k − s do
9: /* δR, δW

1 , . . . , δW
d = credit-history changes.*/

10: δR ← c
[
PQ-Min(HR)

]− c
11: for i ∈ [d] do

12: δW [i] ← c[PQ-Min(HW
i )](

1+
|eR

i |
|eW

i |
) − c

13: end for
14: δ ← min

{
δR, δW [1], . . . , δW [d]

}
15: /* Update the credit history.*/
16: c ← c + δ
17: /* Demote some objects.*/
18: while c

[
e = PQ-Min(HR)

]
= c do

19: LL ← LL \ {e}
20: PQ-Remove(HR)
21: end while
22: /* Destage some objects.*/
23: for i ∈ [d] do

24: while c
[
e = PQ-Min(HW

i )
]

= c

(
1 + |eR|

|eW |

)
do

25: PQ-Remove(HW
i )

26: m [e] = F
27: c [e] ← c + feR

|eR|
28: PQ-Insert(HR, e)
29: end while
30: end for
31: end while

When studying the competitiveness of RW-Landlord, we

similarly partition the cache of O to O = OR
·⋃

OW as
well.

We differentiate the setting from that of a classical
caching problem, by requiring the following invariants on
object containment:

Invariant 3:

∀eW eW ∈ LLW ⇒ eR ∈ LLR (43)
∀eW eW ∈ OW ⇒ eR ∈ OR,

and the requirement that servicing a write request entails
that both read object and write objects are in the cache,
i.e.,

Invariant 4:

ρ[j] = (ej ,W ) ⇒
(
eR
j ∈ LLR

∧
eW
j ∈ LLW

)
. (44)
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Specifically, we must take care that the algorithm does
not evict a read object before the corresponding write ob-
ject, and that a read object is not evicted in order to make
place for its corresponding write object. The former would
be equivalent to evicting an object while retaining its re-
dundancy. The latter would be equivalent to evicting an
object in order to make place for its redundancy.

We will show that RW-Landlord has the corresponding
invariants to that of M-Landlord’s Invariant 1:

Invariant 5:

∀eR∈LLRc
[
eR

] ≤ feR , (45)

∀eW∈LLW c
[
eW

] ≤ feW ,

∀e∈LLc [e] ≥ 0

Algorithm 3 shows a high level description of the algo-
rithm. In structure, it is quite similar to that of Algorithm
1. There are some differences. Note that a request ρ[j]
is now explicitly to eR

j or to eW
j , instead of specifying an

object and an access type. The credit of each object is
maintained directly, instead of the use of the credit history
variable c in Algorithm 1. Access to objects is done via
Algorithm 4, to make explicit Invariance 4.

Algorithm 3 RW-Landlord(ρ[j])

Handles a request ρ[j] = e
tj

j .
1: /* Check if ρ[j] does not modify objects’ state.*/
2: if eR

j ∈ LLR
∧ (

tj = W ⇒ eW
j ∈ LLW

)
then

3: RW-Landlord-Service-Request(ρ[j])
4: return
5: end if
6: /* Evict space needed */
7: RW-Landlord-Evict(ρ[j])
8: /* Check if read object must be retrieved.*/
9: if eR

j /∈ LLR then
10: Retrieve eR

j

11: LLR ← LLR
·⋃ {

eR
j

}

12: c
[
eR
j

] ← feR
j

13: end if
14: /* Check if write object must be retrieved.*/
15: if tj = W then
16: Retrieve eW

j

17: LLW ← LLW
·⋃ {

eW
j

}

18: c
[
eR
j

] ← feR
j

19: c
[
eW
j

] ← feW
j

20: end if
21: RW-Landlord-Service-Request(ρ[j])

Algorithm 5 shows how space is cleared for a request.
First, the space needed for eviction is calculated (lines 1
to 6). The algorithm loops until at least that amount has
been evicted (lines 8 to 31), while maintaining Invariant 3.
In each iteration, credit is decreased from all objects (line
11). Objects whose credit is 0, are evicted (line 28).

Algorithm 4 RW-Landlord-Service-Request(ρ[j])

Handles an existing-object request ρ[j] =
e
tj

j .

Require: eR
j ∈ LLR

∧ (
tj = W ⇒ eW

j ∈ LLW
)

1: /* For reads, access and update a single object.*/
2: if (tj = R) then
3: access eR

j

4: /* For write, access and update two objects.*/
5: else
6: access eR

j and eW
j

7: end if

To ensure that invariant 5 is maintained, credit trans-
ference is used. When clearing space for a write object,
the credit of the corresponding read object is raised to the
maximum (line 14). In addition, all write objects transfer
credit to their read objects (lines 16 to 23).

We now analyze the competitiveness of the algorithm.
Theorem 7: LLRW is k

h−k+1 competitive.

To analyze LLRW , we use a potential function from [34].
Definition 5: Define the potential function

Φ = (46)
(h− 1)

∑

e′R∈LLR

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ LLW

c
[
e′R

]
, e′W /∈ LLW +

k
∑

e′R∈OR

{
fe′R + fe′W , e′W ∈ OW

fe′R , e′W /∈ OW −

k
∑

e′R∈OR

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ OW

c
[
e′R

]
, e′W /∈ OW

The following lemma proves Theorem 7.
Lemma 3: Following any series of actions by LLRW and

O, Φ ≥ 0. The following four operations affect Φ:
• O retrieves eR: Φ increases by at most kfeR .
• O retrieves eW : Φ increases by at most kfeW .
• LLRW retrieves eR: Φ decreases by at least (k−h+1)feR .
• LLRW retrieves eW : Φ decreases by at least (k − h +
1)feW .
No other action by O or LLRW increases Φ.

The proof of Lemma 3 is similar in many points to that
in [34]. We focus mainly on the points in which it differs
due to Invariants 3, 4, and 5.

Proof: We analyze the effect of the steps taken by O
and LLRW on Φ.
• O evicts e ∈ O: Since Invariant 5 is maintained (see
Algorithm 3), Φ cannot increase.
• O retrieves e ∈ O: In this case O pays fe. Since Invariant
5 (∀e∈LLc [e] ≥ 0) is maintained (see Algorithm 3), then Φ
increases by at most kfe.
• LLRW transfers credit from c

[
eW

]
to c

[
eR

]
(lines 21 and

20): In this case eR
j ∈ LLR and eW

j ∈ LLW . Rewriting Φ,
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Algorithm 5 RW-Landlord-Evict(ρ[j])

Clears space for a request ρ[j] =
e
tj

j .

Require: eR
j /∈ LLR

∨ (
tj = W

∧
eW
j /∈ LLW

)
1: /* s indicates the space which need be cleared.*/
2: s ← (tj = R)?

∣∣eR
j

∣∣ :
∣∣eW

j

∣∣
3: if tj = W

∧
eR
j /∈ LLR then

4: /* Increment s if a read object is needed.*/
5: s ← s +

∣∣eR
j

∣∣
6: end if
7: /* Evict space while maintaining Invariant 3.*/
8: while |LL| ≥ k − s do

9: δ ← min
{

mineR∈LLR

c[eR]
|eR| ,mineW∈LLW

c[eW ]
|eR|+|eW |

}

10: for e ∈ LL do
11: c [e] ← c [e]− δ |e|
12: if tj = W

∧
eR
j ∈ LLR then

13: /* Update corresponding read-object, if in
cache.*/

14: c
[
eR
j

] ← feR
j

15: end if
16: for eR ∈ LLR do
17: if eW ∈ LLW then
18: /* Transfer credit from write objects to read

objects.*/
19: δ′ ← min

{
δ
∣∣eR

∣∣ , δ
∣∣eW

∣∣}
20: c

[
eR

] ← c
[
eR

]
+ δ′

21: c
[
eW

] ← c
[
eW

]− δ′

22: end if
23: end for
24: end for
25: for e ∈ LL do
26: if c [e] = 0 then
27: /* Evict objects with 0 credit.*/
28: LL ← LL \ {e}
29: end if
30: end for
31: end while

we have

Φ = (47)
(h− 1)

(
c
[
eR

]
+ c

[
eW

])
+

(h− 1)
∑

e′R∈LLR\{eR}

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ LLW

c
[
e′R

]
, e′W /∈ LLW +

k



feR + feW − (
c
[
eR

]
+ c

[
eW

])
, eW ∈ OW

feR − c
[
eR

]
,

eR ∈ OR

eW /∈ OW

0 , eR /∈ OR

+

k
∑

e′R∈OR\{eR}

{
fe′R + fe′W , e′W ∈ OW

fe′R , e′W /∈ OW −

k
∑

e′R∈OR\{eR}

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ OW

c
[
e′R

]
, e′W /∈ OW ,

which shows that Φ cannot increase.
• LLRW increments c

[
eR

]
to feR (line 14): We can assume

in this case that eR ∈ OR, and therefore the increase to Φ
is (feR − c

[
eR

]
)(h− 1− k) ≤ 0.

• LLRW decreases uniformly c [e′] for all e′ ∈ LL (line
11): This occurs in one of three cases: either there is an
eR ∈ OR \ LLR, or there is an eW ∈ OW \ LLW , or both
of the previous. We prove the first case (which is the only
case in [34]). The other two cases are similar. Letting
O′R = OR

⋂
LLR, and, O′W = OW

⋂
LLW we have

Φ
(a)
= (48)

(h− 1)
∑

e′R∈LLR

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ LLW

c
[
e′R

]
, e′W /∈ LLW +

k
∑

e′R∈OR

{
fe′R + fe′W , e′W ∈ OW

fe′R , e′W /∈ OW −

k
∑

e′R∈O′R

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ O′W

c
[
e′R

]
, e′W /∈ O′W

.

(where (a) follows from the fact that for e′ /∈ LL, c [e′] = 0.
Since eR ∈ O \ LL, |O ⋂

LL| ≤ h− ∣∣eR
∣∣. Since there is no

room for eR in LL, |LL| ≥ k−
∣∣eR

∣∣ + 1. It follows that the
decrease to Φ is at least (h−1)(k−

∣∣eR
∣∣+1)−k(h−

∣∣eR
∣∣) =

(1−
∣∣eR

∣∣)(h− 1− k) ≥ 0.
• LLRW evicts an object e (line 28): Since this happens
when c [e] = 0 (line 26), Φ does not change.
• LLRW retrieves eR (line 11) and sets its credit to c

[
eR

]
(line 12): In this case, LLRW pays a cost of feR . Since
the retrieval is done in response to a request for eR or eW ,
we can assume that eR

j ∈ OR. The increment to the credit
therefore increments Φ by (h − 1 + k)fe, or equivalently,
decrease it by (k − h + 1)fe.
• LLRW retrieves eW (line 17) and sets its credit to c

[
eW

]
(line 19): This is similar to the previous case.

B.3 Loose Competitiveness of M-Landlord

The following lemma shows that LLM and LLRW work
similarly.

Lemma 4: Assume at the starting point LLM is operat-
ing on an empty level, and LLRW is operating on an empty
cache. Let ρM and ρRW be request sequences to LLM and
LLRW , respectively, s.t. at any request j ∈ [M ],

ρM[j] = (ej , tj) ⇔ ρRW [j] = e
tj

j (49)

Then following the request,
• LLM contains an unmodified object e↔LLRW contains
eR and does not contain eW .
• LLM contains a modified object e ⇔ LLRW contains
both eR and eW .
• LLM does not contain an object e ⇔ LLRW contains
neither eR nor eW .

Proof: We first show the relation between credit vari-
ables maintained by the algorithms LLM and LLRW .
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If LL contains modified ej , then

c
[
eW
j

]
=

(
c [ej ]− c

(
1 +

∣∣eR
j

∣∣
∣∣eW

j

∣∣

))
∣∣eW

j

∣∣ (50)

and

c
[
eR
j

]
= feR

j
. (51)

If LL contains unmodified ej , then

c
[
eR
j

]
= (c [ej ]− c)

∣∣eR
j

∣∣ . (52)

and there is no eW
j object.

In other words, the actual credit of an element is given
by (50) if it is modified and by (52) if it is unmodified.

if ej is modified then (51) clearly holds, since its read and
write objects exist, and hence whenever c

[
eR
j

]
is decreased

in line 11 of Algorithm RW-Landlord-Evict, it is increased
back to the initial value in lines 16-21.

Initially (when an element is inserted to priority queues
in Algorithm LLM) (50) and (52) are clearly true (see lines
18 and 25 in Algorithm M-Landlord and line 28 in Algo-
rithm M-Landlord-Evict).

The value of element’s credit is effectively decreased in
line 16 in Algorithm M-Landlord-Evict (by increasing the
counter). If ej is unmodified, the credit of eR

j is decreased
by δ

∣∣eR
j

∣∣ in line 11 in Algorithm RW-Landlord-Evict, while
c is decreased by δ in line 16 in Algorithm M-Landlord-
Evict. Hence, Equation 52 still holds. If ej is modified,
the credit of eW

j is decreased by δ
∣∣eW

j

∣∣ in line 11 and ad-
ditionally by δ

∣∣eR
j

∣∣ in line 21 in Algorithm RW-Landlord-
Evict, while c is increased by δ in line 16 in Algorithm
M-Landlord-Evict. Hence, Equation 50 still holds.

Finally, we note that by Equation 52, condition for re-
moval of ej from LL in line 20 in M-Landlord-Evict corre-
sponds to a condition feR = 0 in line 26 in RW–Landlord-
Evict. Similarly, by Equation 50, condition for marking ej

as unmodified in line 26 in M-Landlord-Evict corresponds
to a condition feW = 0 (for removal of write object) in line
26 in RW–Landlord-Evict.

By Theorem 7, LLRW is k
k−h+1 competitive. We show

that this implies the competitiveness of LLM as well.
Theorem 8: LLM is k

k−h+1 competitive.
Proof: Let

γ′(h, k) = max
eW

feW

h

|eW | . (53)

We then have

fLL
M(k)

(
ρM

) (a)

≤ (54)

fLL
RW(k)

(
ρRW

) (b)

≤
k

k − h + 1
fO

RW(h)
(
ρRW

) (c)

≤
k

k − h + 1
fO

M(h)
(
ρM

)
+

k

k − h + 1
γ′(h, k)

where in the above, (a) follows from the fact that LLM
“simulates” the actions of LLRW , and so its cost is not
higher than that of LLRW , (b) follows from Theorem 7,
and (c) follows from the fact that if an algorithm O′RW for
the cache problem would “simulate” the actions of OM,
then

fO
′RW(k)

(
ρRW

) ≤ fO
M(h)

(
ρM

)
+ γ′(h, k), (55)

since for each write object retrieved, OM might decide not
to flush it to the lower level, but the number of objects for
which this is true is bounded by a function of h, and not
of ρ.

From (54) we have that LLRW is competitive according
to Definition 2, with

α(h, k) =
k

k − h + 1
, (56)

γ(h, k) =
k

k − h + 1
γ′(h, k).

The following proof of claim 1 in Theorem 6 follows [34],
but differ in the definitions of loose competitive, and of the
accompanying constants.

Lemma 5: LLM is (ε, δ)-loosely (1−ln(ε))e
δ -competitive.

Proof: For fixed ε, δ, and k, let b  0 be a constant,
and define

η = η(b, k, ε, δ) =
k

b
ε−

b
δk−b , (57)

For a fixed ρ, let B be a set of s bad values consisting of
any j for which

fLL
M(j)

(
ρ
) ≥ max

{
α · fO(j)

(
ρ
)
, ε

M∑

i=1

fρ[i]

}
+ γ(j). (58)

Specifically, let B = {k1, . . . , ks}. W.l.o.g., let k1 ≤ · · · ≤
ks ≤ k. Define the subset B′ = {k′1, . . . , k′s′} ⊆ B, by k′i =

kdibe, for i ∈
[⌈

s
dbe

⌉]
. Note that for i ∈ [s′], k′i − k′i−1 ≥ b,

and that s′ ≥ s
b+1 − 1. We then have

fLL
M(k′i)

(
ρ
) (a)

≤ (59)

k′i
k′i − k′i−1 + 1

fO(k′i−1)
(
ρ
) (b)

≤

k′i
η(k′i − k′i−1 + 1)

·
(
fLL

M(k′i−1)
(
ρ
)− γ(k′i − k′i−1 + 1, k′i−1)

) (c)

≤
ε

b
δk−b fLL

M(k′i−1)
(
ρ
)
,

where, in the above, (a) follows from Theorem 8, (b) follows
from the fact that k′i−1 is bad and (58), and (c) follows from

the fact that k′i
η(k′i−k′i−1+1) ≤ k

ηb and (57).
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Inductively,

fLL
M(k′

s′ )
(
ρ
) ≤

(
ε

b
δk−b

)s′

· fLLM(k′0)
(
ρ
)
. (60)

We also have

ε · fLLM(k′0)
(
ρ
) (a)

≤ ε ·
M∑

i=1

fρ[i]

(b)

≤< fLL
M(k′

s′ )
(
ρ
)
, (61)

where (a) follows from the fact that the cost of an algorithm
cannot be larger than the sequence request, and (b) follows
from (58).

It follows from (60) and (61) that ε ≤
(
ε

b
δk−b

)s′

, from

which it follows that s′ ≤ δk−b
b , and therefore

s ≤ δ
b + 1

b
k. (62)

From the definition of the set B, and (62), we have that
LLM is (ε, δ b+1

b , k)-loosely k
b ε−

b
δk−b -competitive, for b  0.

For any k, setting b = δk
1−ln(ε) in (57), yields η = 1−ln(ε)

δ e.
For all but a finite number of k,

δ
b + 1

b
= δ

(
1 +

1
δk

1−ln(ε)

)
≤ δ + δ′. (63)

C. Comparison to Some Common Solutions

Present systems commonly employ two types of solutions
for the eviction problem in Subsection III-A. In the first,
maximal protection, all data is protected to the maximal
requirement. In the second, static partitioning devices, or
devices’ blocks, are statically partitioned s.t. each partition
element is dedicated to elements of a single priority. In both
cases, an eviction policy for uniform priority is used (either
according to the highest priority, or within each partition
element). It is clear that these solutions are not efficient
in terms of storage efficiency (in particular the first one).
We show in this subsection that, in addition, they are not
competitive in any definition in Subsection III-A.

Theorem 9: Let d be a number of priorities. Let Am be
any eviction algorithm based on maximal protection (while
the ratio between the highest priority space consumption
per one element to the lowest priority one is νd

ν1
) , and As be

any eviction algorithm based on static partitioning, where
either or both of Am and As can be random algorithms.
1. For any h, k s.t. h  k

d , αAs,h,k = ∞.
2. For any δ > 1

d , ε < 1− 1
dδ and k, α̂(As, ε, δ, k) = ∞.

3. For any h, k s.t. h  k
νd
ν1

, αAm,h,k = ∞.

4. For any δ > 1
d , ε < 1− 1

δ
νd
ν1

and k, α̂(Am, ε, δ, k) = ∞.

We first prove claim 1 in Theorem 9.
Proof: Let E =

{
e1, . . . , e k

d +1

}
be arbitrary elements

of priority j. Consider the request sequence ρ = ρ1, . . . , ρM

s.t. ρi = (ei mod ( k
d +1), R). Clearly, the cost of the op-

timal algorithm on the request sequence is fO(h)
(
ρ
)

=∑
i∈{ k

d +1} fei . Dividing the request series into rounds,

each of size k
d , it is easy to see that in each round, As

incurs a cost of at least mini∈[ k
d +1] fei . Clearly,

fAs(k)
(
ρ
)

fO(h)
(
ρ
) ≥

∑ M
k
d

+1

j=0 mini∈[ k
d +1] fei∑

i∈{ k
d +1} fei

M→∞−→ ∞. (64)

The proof now follows by Yao’s Minimax principle [33].
The proof of claim 3 in Theorem 9 is similar.

We now prove claim 2 in Theorem 9.
Proof: Let γ ∈ (1, d) be a real number. Let Adet

s be
the best online paging deterministic algorithm, which uses
static partitioning. Clearly, for each cache size k′ ≤ k there
is some j such that Algorithm Adet

s allocates for priority j
at most k

d space.

Set E =
{

e1, . . . , eγ k
d

}
be arbitrary elements of priority j

(having cost fe each one). The read sequence ρ of length M
is chosen in the following way: ρ[i] is chosen uniformly from
all the items of E. Then for cache sizes k′ s.t. γ k

d ≤ k′ ≤ k
we have

E
[
fA

det
s (k′) (

ρ
)] ≥ M

γ − 1
γ

fe, (65)

M∑

i=1

fρ[i] ≤ Mfe, (66)

fO(k′) (
ρ
) ≤ γ

k

d
fe. (67)

Note that (67) holds if k′ ≥ γ k
d . Hence,

E
[
fA

det
s (k′)

(
ρ
)]

fO(k′)
(
ρ
) ≥

M γ−1
γ

γ k
d

M→∞−→ ∞ (68)

for all γ k
d ≤ k′ ≤ k.

E
[
fA

det
s (k′)

(
ρ
)]

∑M
i=1 fρ[i]

≥ γ − 1
γ

= ε. (69)

Hence, for ε < γ−1
γ and δ > γ

d , the algorithm Adet
s is not

(ε, δ, k) loosely-competitive. In other words, the algorithm
Adet

s is not (ε, δ, k) loosely-competitive for δ > 1
d and ε <

1 − 1
dδ . By theorem ??, the algorithm As is not loosely-

competitive too.
The proof of claim 4 in Theorem 9 is similar.

IV. LDGM Codes for Storage-Systems

In this section we discuss a variation of LDGM (low-
density generation-matrix) codes. LDPC (low-density
parity-check) and LDGM codes were extensively studied
in the field of communication [8], [9], [10], [11], [61], due
to their low computational-complexity and nearly-optimal
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rate. We propose a variation suitable for storage sys-
tems. The use of LDGM codes for storage was indepen-
dently proposed previously [35], [36], [54], [61], for reasons
of computational-complexity alone, and under the caveat
that they are probabilistic.

Consider two coding alternatives with equal storage
rates. In the first, all bits are encoded as a single group. In
the second, the bits are partitioned into groups, and each
group is coded. By the law of large numbers, it is clear
that the former alternative is superior in terms of loss prob-
ability to the latter (whose loss probability approaches 1,
as the number of groups grows). The former alternative
might have other drawbacks. Reed-Solomon coding [1], for
example, would necessitate accessing nearly all bits for the
recovery of nearly any failure configuration. We are inter-
ested in codes for large data-groups which have a recovery
penalty determined by the number of errors which took
place, rather than being always proportional to the group
size.

The complementary question, of bounded update
penalty (defined similarly), was previously addressed in an
excellent paper [57], where an inverse relationship between
recovery locality and update locality was also shown.

This section is organized as follows. In Subsection IV-A
we give the relevant definitions and notations of LDGM
codes. We next show two codes with low block error-
probability, good recovery locality, and low computational-
complexity. In Subsection IV-B we show the first code,
which has a sub-optimal storage rate. Using this code, we
show in Subsection IV-C a code with an asymptotically-
optimal storage rate, but higher update penalty. In Sub-
section IV-D we show simulation results.

A. Definitions and Notations

In this subsection we give the relevant definitions of
LDGM codes. We consider a recursive LDGM code C
composed of p levels, C(1), . . . , C(p), each of which can be
un-augmented or augmented. In Sub-subsection IV-A.1 we
give the definitions for a single level. In Sub-subsection
IV-A.2 we give the definitions for the recursive code.

A.1 A single level

An un-augmented level of an LDGM code is described
by a Tanner-graph, which is a bipartite graph

G = (V,E) = (L
·⋃

R, E). (70)

Let m = |L|. Each node in L represents a data bit; each
node in R represents a parity bit. The value of any node
v is denoted by value (v). An example of such a graph is
shown in Figure 5. For any parity node vr ∈ R, its left-
neighbor set,

←−
V (vr) ⊆ L, is the set

←−
V (vr) =

{
v` ∈ L | (v`, vr) ∈ E

}
. (71)

For any data node v` ∈ L, its right-neighbor set,
−→
V

(
v`

)
, is

defined similarly. The parity bit corresponding to vr is set

Partiy

nodes

Data

nodes

Fig. 5. A Tanner graph.

to be the XOR (exclusive or) of the data bits corresponding
to the nodes in

←−
V (vr), i.e.,

value (vr) =
⊕

v`∈←−V (vr)

value
(
v`

)
. (72)

The edges in E thus represent parity constraints. The
graph is sparse, i.e., |E| = O (|L|) = O (|R|).

The average left-node and right-node degrees are

a` =

∑
v`∈L

∣∣∣−→V
(
v`

)∣∣∣
|L| , (73)

ar =

∑
vr∈R

∣∣∣←−V (vr)
∣∣∣

|R| ,

respectively. The fractions of edges whose left and right
node-degree is i, are

λi =

∣∣∣
{

e = (v`, vr) ∈ E |
∣∣∣−→V

(
v`

)∣∣∣ = i
}∣∣∣

|E| , (74)

ρi =

∣∣∣
{

e = (v`, vr) ∈ E |
∣∣∣←−V (vr)

∣∣∣ = i
}∣∣∣

|E| ,

respectively. These degrees are usually put into the form
of generating functions

λ(x) =
∞∑

i=1

λix
i−1, (75)

ρ(x) =
∞∑

i=1

ρix
i−1.
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Note that λ(x) and ρ(x) completely define the un-
augmented level.

Assume that all nodes in R are valid, and that some
nodes in L have failed. The recovery process is iterative.
In each step, a node vr ∈ R is chosen s.t. a single node
v` ∈ ←−V (vr) is failed, and the value of v` is then corrected
using (72). Of course, the recovery process terminates pre-
maturely if such a node vr cannot be found. We denote by
Pblock (L) the block error-probability, which is the proba-
bility that the recovery process terminates while some bits
in L have not been recovered. We denote by Pbit (L,α)
the α-bit error probability, which is the probability that
the recovery process terminates while a fraction of at least
α bits in L has not been recovered.

We will use the following theorem from [10].
Theorem 10: Assume a fraction of δ nodes from L orig-

inally fail.
1. In the family of codes for which

∀x∈(0,δ]δ · λ(1− ρ(1− x)) < x, (76)

a fraction of 1− o (1) of the codes have

∀α<1Pbit (L,α) = o
(
e−αm

)
. (77)

2. In the family of codes for which (76) holds and

λ1 = λ2 = 0, (78)

a fraction of 1− o (1) of the codes have

Pblock (L) = o
(
e−Ω(m)

)
. (79)

As seen in Theorem 10, a code for which (78) does not
hold, does not guarantee the recovery of all nodes. On the
other hand, it was shown in [62] that if (78) holds, then the
storage rate is suboptimal. For this reason, an augmented
level is commonly used. In an augmented level, the nodes
in L are protected by both an LDGM code for which (78)
does not hold, and by an expander-based code [10], [63].
The LDGM code corrects all but a negligible number of
failed nodes. The expander-based code corrects the rest.

A.2 The recursive code

The recovery process of C(i), described in Sub-subsection
IV-A.1, requires that all the nodes in R be valid. Since
these nodes can fail, a recursive code is used. This is shown
in Figure 6. In the recursive code, each level’s R is taken
to be the next level’s L. A sequence of p levels is built,
C(1), . . . , C(p). The last level, C(p), is composed of a non-
recursive code (e.g., Reed-Solomon).

Note that in general, it is not required that the C(i) be
of the same type. Typically, however, a recursive LDGM
code is composed of same-type levels (except for the last).
Let the storage-rate of a level be denoted by β, and let
β′ = 1−β

β . Let the number of original data bits be n. Level

Data

nodes Recursive Layers

Fig. 6. A recursive LDGM encoding.

i is then an LDGM code with β′i−1n left nodes and β′in
right nodes. Assume that p is set s.t. β′p−1n ≈ √

n. It
follows that the total number of redundant nodes is

n
∑

i∈[p]

β′i ≈ (80)

(
n− β′

√
n
) β′

1− β′
=

(
n− 1− β

β

√
n

)
1− β

2β − 1
.

B. A Truncated Right-Regular Code

In this subsection we define a right-regular code which is
a variation of [46], and analyze its performance. The code
is truncated, in its power series λ(x) having a 0 coefficient
of the x term. This code has low block error-probability,
good recovery locality, and low computational-complexity.
We use this code in Subsection IV-C as well.

Definition 6: Let Ĉ(i) be an un-augmented level of an
LDGM code, defined by the generating functions:

λ̂(x) =
∑q̂−1

k=2

(
α̂
k

)
(−1)k+1xk

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

, (81)

ρ̂(x) = xâ−1,

where â ≥ 2 and q̂ ≥ 3, are arbitrary integers, and α̂ =
1/(â− 1). Let the average left-node degree be denoted by
â` (the average right-node degree is obviously â).

Note that λ̂(x) is a normalized sum of xi terms of the
Taylor expansion of 1− (1− x)α̂, for 2 ≤ i ≤ q̂.

The main result in this subsection is the following.
Theorem 11: Let

δ̂max =
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

1− α̂
. (82)

Then we have the following attributes of Ĉ(i):
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1. Let δ denote the fraction of errors in L.

δ ≤ δ̂max ⇒ Pblock (L) = o
(
e−Ω(m)

)
. (83)

2. • If the number of failed data-nodes is |Lf | and the
number of accessed data-nodes is |La|, then

|La| ≤ â |Lf | . (84)

• Let Ĉ be a recursive LDGM code composed of Ĉ(i)s.
Then the expected number of accesses per single (data or
parity) failed-node recovery approaches â + 1.
3. • If the number of modified data-nodes is |Lu| ¿ |L|
and the number of accessed parity-nodes is |Ra|, then

|Ra| ≈ |R| − |R|
(

1− â` |Lu|
â |R|

)â

(85)

• Let Ĉ be a recursive LDGM code composed of Ĉ(i)s,
protecting n original data-bits. Let a single data-node be
modified. Then the ratio between the expected number of
accessed nodes and total number of redundant nodes is

o

(
1

nΩ(1)

)
. (86)

4. The storage rate of the code is greater than

1−
2

(
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

)

1− 2
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

. (87)

5. The ratio between the fraction of errors corrected by
Ĉ(i), and the fraction corrected by an optimal code of the
storage rate in (87), is

1
2
− 1

q̂α̂+1(1− α̂)
. (88)

6. The computational complexity of encoding and decod-
ing is linear.

For much of the proof, we modify proofs from [10] and
[46].

We first prove item 1 of Theorem 11,
Proof: To apply item 2 of Theorem 10, we first must

show that the degree distributions are valid ones. To do
so, it is sufficient to show that the coefficients of λ̂(x) are
positive, and that λ̂(1) = ρ̂(1) = 1.

To show the positivity of the coefficients, note that
(

α̂

k

)
=

α̂(α̂− 1) · · · (α̂− k + 1)
k!

= (89)

(−1)k−1 α̂

k

(
1− α̂

k − 1

)
· · ·

(
1− α̂

2

)
(1− α̂).

To show that the sum of the coefficients is 1, note that

λ̂(1) =
∑q̂−1

k=2

(
α̂
k

)
(−1)k+11k

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(a)
= 1, (90)

ρ̂(1) = 1â−1 = 1,

where (a) follows from the fact that, by induction, [10]

q̂−1∑

k=1

(
α̂

k

)
(−1)k+1 = 1− q̂

α̂

(
α̂

q̂

)
(−1)q̂+1. (91)

We now show that the condition of item 2 in Theorem
10 holds.

Expanding λ̂(1− ρ̂(1− x)), we have

λ̂(1− ρ̂(1− x))
(a)
= (92)

∑q̂−1
k=2

(
α̂
k

)
(−1)k+1(1− ρ̂(1− x))k

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(b)

≤
∑∞

k=2

(
α̂
k

)
(−1)k+1 (1− ρ̂(1− x))k

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(c)
=

1− (1− (1− ρ̂(1− x)))α̂ − α̂ (1− ρ̂(1− x))
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(d)
=

1− (
1− (

1− (1− x)â−1
))α̂ − α̂

(
1− (1− x)â−1

)

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(e)
=

x− α̂ + α̂(1− x)
1
α̂

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

, (93)

where in the above, (a) follows from (81), (b) follows from
the fact that by (89), for y ≤ 1,

(
α̂

k

)
(−1)k+1 (1− y)k ≥ 0, (94)

(c) follows from the fact that the Taylor expansion of 1 −
(1− y)α̂ is

1− (1− y)α̂ =
∞∑

k=1

(
α̂

k

)
(−1)k+1yk, (95)

and (d) and (e) follow from (81).

We also note for the above, that it was shown in [46]
that

λ̆(x) =
∑q̂−1

k=1

(
α̂
k

)
(−1)k+1xk

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1

(96)

converges in the relevant range of x, and so

λ̂(x) =
λ̆(x)

(
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1

)
− α̂x

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(97)

converges as well.
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Using the above expansion, we now have that for x ∈
(0, δ̂max],

δλ̂(1− ρ̂(1− x))
(a)

≤ (98)

δ
(
x− α̂ + α̂ · (1− x)

1
α̂

)

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

(b)

≤

δ (1− α̂) x

1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

=

δ

δ̂max

x ≤ x,

where, in the above, (a) follows from (93), and (b) follows
from the fact that

∀0≤x≤1x− α̂ + α̂ · (1− x)
1
α̂ ≤ x(1− α̂). (99)

We now prove item 2 of Theorem 11.
Proof: The first part follows easily from description,

in Sub-subsection IV-A.1, of the recovery process. For the
second part, assume that the number of original data-bits
is n. Note that the number of accesses required for a failed
node v is at most

{ √
n , v ∈ Ĉ(p)

â , otherwise
. (100)

Let n′ be the total number of nodes not in Ĉ(p). The
average number of accessed nodes is

ân′ +
√

n · √n

n′ +
√

n
. (101)

Using (80), we get that the average number of accessed
nodes is at most

â +
2β − 1

β
< â + 1, (102)

since 2β−1
β < 1 for 1

2 < β < 1.

We now prove item 3 of Theorem 11.
Proof: To prove the first part, we use the differential-

equation approach from [10]. Some edges emanate from
the Lm ⊂ L modified nodes. Let the number of such edges
be m′; let the edges be e1, . . . em′ .

Assume a process of m′ steps. Let each step take ∆t =
1

m′ time. Let rt denote the average number of un-accessed
parity-nodes at time t. At step i, the node vr

i is accessed,
where vr

i ∈ R is the terminating node of ei. The value
of ri∆t is updated, if necessary. It can be shown that the
difference-equation system for rt is:

rt+∆t − rt = − ârt

â|R| − t
∆t

, (103)

r0 = |R|.

Manipulating and taking ∆t → 0, we get the differential-
equation system:

d rt

d t
= − m′ârt

â|R| − tm′ , (104)

r0 = |R|.

Solving for rt and setting t = 1, we get

r1 = |R|
(

1− m′

â|R|
)â

. (105)

It remains to approximate m′. This random variable is
distributed hyper-geometrically. For |Lm| ¿ |L|, m′ ≈
âlLm.

We now prove the second part. On the average, when
updating a left node, âl right nodes should be updated.
For each level, the maximal number of nodes updated is
not larger than the number of parity nodes in the level. It
follows that for any j ∈ [p], the average number of accessed
nodes is bounded by

j∑

i=0

âl
i+1 +

p̂∑

i=j+1

βi+1n. (106)

Minimizing by j yields that the number of accessed nodes
is

≈ n
log âlβ′

1−β′
(âl) (

âl

âl − 1
+

1− β′

2β′ − 1

)
(107)

−√n
1− β′

2β′ − 1
− âl

âl − 1
.

The combination of (80) and (107) shows that the ratio of
the number of accessed nodes to the number of redundant
nodes is

o

(
n
log âlβ′

1−β′
(âl)− 1

)
. (108)

Note that since β′

1−β′ > 1, the power of n in (108) is nega-
tive.

We now prove item 4 of Theorem 11.
Proof: By definition, the storage rate of the code is

the ratio between the size of the left-node set and the total
number of nodes.

r =
|L|∣∣∣∣L
·⋃

R

∣∣∣∣
=

1

1 + |R|
|L|

≥ 1− |R|
|L| = (109)

1−
∫ 1

0
ρ̂(x) dx∫ 1

0
λ̂(x) dx

(a)
=

1−
2

(
1− q̂

α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

)

1− 2
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂
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where (a) follows from the fact that

q̂−1∑

k=1

(
α̂

k

)
(−1)k+1

k + 1
=

α̂− (
α̂
q̂

)
(−1)q̂+1

α̂ + 1
, (110)

∫ 1

0

λ̂(x) dx =

α̂

α̂ + 1

1− 2
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

2(1− q̂
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂)

,

∫ 1

0

ρ̂(x) dx =
α̂

α̂ + 1
.

We now prove item 5 of Theorem 11.
Proof: For any storage rate r, an optimal code could

then correct a fraction of 1 − r errors [1]. The ratio of
correction capabilities is therefore,

δ̂max

1−R
≥ (111)

1− 2
α̂

(
α̂
q̂

)
(−1)q̂+1 − α̂

2(1− α̂)
(a)
=

1
2
− 1

q̂α̂+1(1− α̂)
,

where in the above, (a) uses the fact that [46]

∃c∀q̂≥2∀α̂< 1
2

cα̂

q̂α̂+1
≤

(
α̂

q̂

)
(−1)q̂+1 ≤ α̂

q̂α̂+1
. (112)

Item 6 of Theorem 11 is a known property of LDGM
codes. It follows from the sparseness of G.

C. An Augmented Right-Regular Code

In this subsection we define an augmented right-regular
code based on [46] and Subsection IV-B. This code has
low block error-probability, good recovery locality, and low
computational-complexity. Its storage rate is asymptoti-
cally optimal; its update penalty is higher than the code
from Subsection IV-C.

We will require the following code from [46].
Definition 7: Let C̃(i) be an un-augmented level of an

LDGM code, defined by the generating functions:

λ̃(x) =
α̃

∑q̃−1
k=1

(
α̃
k

)
(−1)k+1xk

α̃− q̃
(
α̃
q̃

)
(−1)q̃+1

, (113)

ρ̃(x) = xã−1,

where ã ≥ 2 and q̃ ≥ 2, are arbitrary integers, and α̃ = 1
ã−1 .

We now define a code that combines the previous two.

Data

nodes

Fig. 7. The augmented level-code.

Definition 8: Let Ći = Ći(ε) be an LDGM level defined
by C̃i, and augmented by Ĉi (from Subsection IV-B) coded
at storage rate

1− ε
1
2 − 1

q̂α̂+1(1−α̂)

. (114)

A level of this code is shown schematically in Figure 7.
This idea is similar to augmenting an LDGM code by an
Expander-based code [10], but has much lower recovery
penalty.

The main result in this subsection is the following.
Theorem 12: Let α̃ and q̃ be defined as in Definition 7.

Let

δ́max =
α̃− q̃

(
α̃
q̃

)
(−1)q̃+1

α̃
, (115)

r̃ = 1−
α̃− q̃

(
α̃
q̃

)
(−1)q̃+1

α̃− (
α̃
q̃

)
(−1)q̃+1

.

Then we have the following attributes of Ć(i):
1. Let the fraction of errors which occurred be δ.

δ ≤ δ́max ⇒ Pblock (L) = o
(
e−Ω(m)

)
. (116)

2. If the number of failed data-nodes is |Lf | À 1 and the
number of accessed data-nodes is |La|, then

|La| / ã |Lf | . (117)
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3. • If the number of modified data-nodes is |Lm| ¿ |L|
and the number of accessed parity-nodes is |Ra|, then

|Ra| / |R|
(

1−
(

1− ã` |Lm|
ã |R|

)ã

+
ε

1
2 − 1

q̂α̂+1(1−α̂)

)
(118)

• Let Ć be a recursive LDGM code protecting n original
data-bits, whose each layer is Ć(i). Let a single data-node
be modified. Then the ratio between expected accessed
parity-nodes and total parity-nodes is

o

(
1

nΩ(1)

)
. (119)

4. The storage rate of the code is greater than

r̃

(
1− ε

1
2 − 1

q̂α̂+1(1−α̂)

)
. (120)

5. The ratio between the fraction of errors corrected by the
code and the fraction corrected by an optimal code of the
same storage rate is

(
1− 1

q̃α̃+1

) (
1− ε

1
2 − 1

q̂α̂+1(1−α̂)

)
. (121)

6. The computational complexity of encoding and decod-
ing is linear.

We first prove items 1 of Theorem 12.
Proof: Using Item 1 of Theorem 10, it can be shown

that C̃(i) corrects all but a negligible fraction of errors ε′

s.t. ε′ ¿ ε. Using Item 2 of Theorem 10 and the proof
of Theorem 11, it follows that Ĉ(i) corrects at least an ε
fraction of errors.

Items 2 and 3 of Theorem 12 can be proved as in Theo-
rem 11.

We now prove item 4 of Theorem 12. Item 5 follows in
a similar manner.

Proof: Let Ĺ denote the set of data nodes. Let R̃
denote the set of parity nodes defined by the code Ĉ(i), R̂
denote the set of parity nodes defined by the code Ĉ(i), and

Ŕ be the total set of parity nodes, i.e., Ŕ = R̃
·⋃

R̂.
Let d̃ and ê be defined by

d̃ = 1− 1
q̃α̃+1

, (122)

ê =
1
2
− 1

1
q̂α̂+1 (α̂ + 1)

.

Then

δ̃max

1− |Ĺ|
|Ĺ|+|R̃|

= d̃, (123)

ε

1− |Ĺ|
|Ĺ|+|R̂|

= ê.

Using (123), we obtain relationships between
∣∣∣R̃

∣∣∣ and∣∣∣Ĺ
∣∣∣, and between

∣∣∣R̂
∣∣∣ and

∣∣∣Ĺ
∣∣∣:

∣∣∣R̃
∣∣∣ =

∣∣∣Ĺ
∣∣∣

δ́max

d̃

1− δ́max

d̃

, (124)

∣∣∣R̂
∣∣∣ =

∣∣∣Ĺ
∣∣∣

ε
ê

1− ε
ê

≥
∣∣∣Ĺ

∣∣∣ ε

ê
.

Inserting (124) into the storage-rate expression of the aug-
mented code, we obtain:

∣∣∣Ĺ
∣∣∣

∣∣∣Ĺ
∣∣∣ +

∣∣∣Ŕ
∣∣∣

= (125)

∣∣∣Ĺ
∣∣∣

∣∣∣Ĺ
∣∣∣ +

∣∣∣R̃
∣∣∣

1

1 + |R̂|
|Ĺ|+|R̂|

=

r̃
1

1 +
ε
ê (1− δ̃max

d̃
)

1− ε
ê

≥

r̃
(
1− ε

ê

)
.

Item 6 of Theorem 12 follows as in Theorem 11.

D. Simulation Results

In this subsection we show simulation results for a single-
layer of the truncated right-regular LDGM codes discussed
in Subsection IV-B:
• Figure 8 shows the single-layer storage-rate and maximal
fraction of fixable nodes as a function of left and right edge-
degrees (derived in (87) and (82) respectively). As noted,
the rate of this code is sub-optimal, necessitating the use
of the augmented code from Subsection IV-C.
• We have performed 500 tests on the block error-
probability. In each test a random code with m = 10000
left nodes, q̂ = 4, â = 4, α̂ = 1

3 , and 8236 right nodes was
first built. Then, 106 iterations were performed. In each
iteration 3900 left nodes were initially set to be corrupted,
and were then attempted to be fixed. The code succeeded
in every single iteration of every single test.
• Figures 9 and 10 show the number of updated nodes as a
function of the fraction of modified left nodes, for the case
q̂ = 4, â = 7, and m = 10004 left nodes. Note that as pre-
dicted, simulation results coincide with the expected value,
given by (85). For small fractions of left nodes being up-
dated, the number of update-IOs can be approximated as
the number of updated left nodes times average left degree
(al).
• Figure 11 shows the number of nodes, accessed by the
recovery procedure, as a function of the fraction of failed
left nodes, for the case q̂ = 4, â = 7, and m = 10004
left nodes. Note that the assumption of a accesses per
each failed node gives the upper bound on the number of
accessed nodes, as shown in (84).
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Fig. 8. Rates and error-correction capabilities as a function of edge
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Fig. 9. Number of updated nodes as a function of the fraction of
modified left nodes for the case q̂ = 4, â = 7, and m = 10004 left
nodes.

V. Applications to Reference Data

The first simple application of the LDGM code is for pro-
tecting large amounts of reference data (i.e., data which is
not often updated). In this application, the bounded pro-
portionality of accessed bits per erased bits, comes into ef-
fect. E.g., consider a three-site reference-data system stor-
ing a copy of each datum in two of the three sites. While
this system can survive a disaster obliterating a single site,
or ongoing failures affecting some devices in all three sites,
the MTTDL can be shown to decrease linearly in the num-
ber of devices. Using an LDGM code to protect all devices,
would result in a system with similar performance, but with
MTTDL increasing in the number of devices. Using a clas-
sic Reed-Solomon code to protect all devices, would result
in a system whose devices would be engaged in much of the
time in recovery-related operations.
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Fig. 10. Ratio
the number of updated nodes by simulation

the number of updated nodes by (85)
as a

function of the fraction of modified left nodes for the case q̂ = 4,
â = 7, and m = 10004 left nodes.
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Fig. 11. Number of nodes, accessed by the recovery procedure, as a
function of the fraction of failed left nodes, for the case q̂ = 4, â = 7,
and m = 10004 left nodes.

VI. Applications to Random Sparing

Data which are active (as opposed to reference data),
are not best protected by the method in Section V; The
update penalty is too high. Commonly, active data-groups
are distributed in some manner over devices, in an attempt
to parallelize request handling [49], [40], [39], [38], [50], [37].
We consider a random-sparing scheme, apparently similar
to an independent OceanStore solution [35], but differing in
the random location-decision and use of bounded-penalty
codes.

We consider a random-sparing scheme, apparently sim-
ilar to an independent OceanStore solution [35]but differ-
ing in the random location-decision and use of bounded-
penalty codes. Using queuing theory and the concepts of
random-variable negative dependence, we perform approx-
imate analysis on the attributes of this scheme: MTTDL,
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coding-group average size and rate, required device mem-
ory, and reliability-related workload.

This section is organized as follows. In Subsection VI-A
we describe the scheme. In subsection VI-B we analyze it.
In Subsection VI-C we show simulation results. In Subsec-
tion VI-D we discuss some implications of the analysis.

A. Scheme Description

In this subsection we describe the random sparing
scheme.

Initially, there are n devices in the system. The data is
divided into data groups. For simplicity, we assume the size
of each group is ` blocks, of which `− `′ can be corrected.
We assume the code used has bounded recovery-locality.
Specifically, we assume that the ratio of accessed blocks
per failed blocks of a group, is at most k. We assume an
average fill-ratio of β, i.e., of the nc blocks in the system,
βnc are taken (and so the number of groups is βnc

` ). We
place the restriction that a fraction of at most µ of all
operations can be dedicated to recovery operations.

We divide the operating time into rounds of duration ts,
and epochs, each consisting of s rounds. For simplicity, we
assume that sts = c

µr , i.e., each epoch lasts the time that
would be required to sequentially read a device from start
to end, normalized by µ.

Naturally, a request to a device can be blocked due to
its servicing previous requests. We assume that each de-
vice has a queue of read and write requests, which it ser-
vices subject to its bandwidth and constraint on fraction
of recovery-operations. Memory is required for write re-
quests in the queue, and for read requests which have been
completed but whose contents are still needed. We later
analyze the system-wide amount of such memory.

At some points, the scheme requires writing a (recovered)
group element to a one of the operating devices. The selec-
tion of the operating device is random, but differs from the
standard uniform selection between all operating devices
which are not full [35]. Rather, a uniform selection is made
between all operating devices (full or non-full), which does
not contain a member of the data group. If a full device
is selected, a reassignment takes place. A random element
from the selected device is chosen to be reassigned to a dif-
ferent device, the recovered element is written to the device
instead of it, and the process continues recursively with the
reassigned element. We explain the rationale for this later.

The scheme is composed of two concurrent processes, a
contracting process and an expanding process, which we
describe next.

The contracting process works as follows. In each round,
the system observes the set of devices which have failed in
the round. For each data group, the system identifies the
members that are on failed devices. If these members can-
not be recovered, then data has been lost at this time. Oth-
erwise, the system randomly selects, for each failed mem-
ber, a subset of k devices out of all subsets of k devices
which can recover the element. For each of these devices,

it inserts into its queue a request to read the required el-
ement. If the system has enough elements to recover an
element, it recovers it, randomly selects a device, and in-
serts into its queue a request to write the element (possibly
triggering reassignment).

We term this a contracting process, since it attempts
to maintain the data groups into a continually contracting
group of devices (those which are still operating).

The expanding process works as follows. At the begin-
ning of each epoch, replacement devices are inserted into
the system. The number of replacement devices is deter-
mined s.t. the expected number of operating devices in
the end of the epoch will remain n. In each round, the
system chooses, for each replacement device, βc

ts
random

data groups which are not represented in the device. For
each such group, it randomly selects a non-replacement de-
vice containing a member of the group, and inserts into its
queue a request to read the required element. When the
element has been read, the replacement devices writes it.

At the end of an epoch, all replacement devices which
have not failed during an epoch, become (new) operating
devices. For each element written to a replacement device
during an epoch, the system modifies its marked location.
It is now marked as being located in the (new) operating
device. Its old location is marked as empty.

We term this an expanding process, since it attempts
to maintain the data groups into a continually expanding
group of devices (the union of operating devices and re-
placement devices).

From the above description, it is clear that the number
of operating devices (originally n), and the average fill ra-
tio of each device (originally β), change with time. In an
arbitrary point in an epoch, we denote these by n′ and β′,
respectively.

The main result of this section is the following theorem.
Theorem 13: Assume

` À log(n), (126)
c
(
1− β

(
1 + 2λsts + 2(λsts)2

)) À 1, (127)
1
λ

À c

µr
. (128)

For some δ  0, let the storage rate of each coding group
be

≈ 1− (1 + δ)λ
(

ts +
k + 1
µr

)
. (129)

Then the system MTTDL of random sparing grows like

c
sµr

e


− 1

2 βnc
`

e
−λ(ts+ k+1

µr ) `δ2
2




. (130)
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B. Analysis

Following is the proof-outline of Theorem 13. In Lemma
7 we bound the expectation of the number of full devices in
a round. In Lemma 8 we bound the probability of a failure
in a round, given the effective number of failed devices
in the round. In Lemma 9 we approximate the number
of pending recovery-requests, using Lemma 7. Using the
number of pending requests, we approximate the effective
number of failed devices in a round.

The analysis of random sparing is complicated by the fact
that the devices’ and groups’ states are not independent,
e.g., if some data-groups have very many representatives in
some set of devices, then the number of representatives of
other data-groups is probably not very large. This makes
it difficult to apply directly the Chernoff bound. For this
reason, we use in some places in the analysis, the notion of
negative dependence [64].

Definition 9: Let X =
{
x1, . . . , x|X|

}
be an ordered set

of random variables. The elements of X are negatively

dependent if for every disjoint index-sets I
·⋃

J ⊆ [|X|],
and any functions f : R|I| → R and g : R|J| → R that
are both non-increasing or non-decreasing,

E [f (xi, i ∈ I) · g (xj , j ∈ J)] ≤ (131)
E [f (xi, i ∈ I)] ·E [g (xj , j ∈ J)] .

The following lemma contains useful properties of
negatively-associated random variables which we will use.
The statements of the lemma appear in [64], or are slight
variations of them.

Lemma 6: Let X be an ordered set of random variables.
Then
1. If f : R → R is a non-increasing or non-decreasing
function, then the Chernoff bound can be applied to∑

x∈X f (x).
2. If Y is a set of negatively-associated random variables,

and X and Y are independent, then X
·⋃

Y is negatively
dependent.

We first bound the expectation of the number of full de-
vices in a round. This in turn, serves to bind the expected
number of reassignments performed.

Lemma 7: At some round, let the fraction of operating
devices’ blocks be β′. Then, with high probability, the
fraction of full devices is at most


 2

β′
(

1
β′ − 1

)3

c




1
3

. (132)

Proof: Let the number of devices be n′, and define the
vector c, s.t. c[i] denotes the number of elements in device i.
For some δ′ ≤ 1 and β′′ ≤ β′, assume that a subset S ⊆ [n′]
exists, s.t. |S| ≥ δ′n′, and ∀i∈Sc[i] ≥ β′′c. A straightfor-
ward calculation shows that the maximum fraction of full

devices, is at most

δ ≤
β′n′c−δ′n′β′′c

c−β′′c

n′
=

β′ − δ′β′′

1− β′′
. (133)

From (133), to show that δ is small, we can show that

δ′
β′′≈β′≈ 1.

Consider three processes A, B, and C, each inserting
β′n′c blocks into the n′ devices. Each process inserts blocks
in β′n′c

` iterations. In each iteration, process A inserts a
coding group into ` distinct devices. If a full device is en-
countered, reassignment is performed. Process B does the
same for the case c →∞, ad so reassignment are not per-
formed. Process C does the same as B, except that at each
iteration, the ` devices are chosen with replacement.

Define the vector w as the indicator of c[i] being less than
(1− ε)β′c elements, i.e.,

w[i] = I (c[i] ≤ (1− ε)β′c) . (134)

We would like to show that at the termination of process
A, with high probability, most entries of w are 0. It clearly
suffices to show that at the termination of process B, with
high probability, most entries of w are 0.

At the termination of any of the three processes,

∀i∈[n′]E [c[i]]
(a)
=

∑
i∈[n′] E [c[i]]

n′
(b)
= β′c, (135)

where (a) follows from the symmetry between devices, and
(b) follows from linearity of expectation and the fact that
E

[∑
i∈[n′] c[i]

]
= n′β′c . At the termination of process B,

it follows from the Chernoff bound that for i ∈ [n′],

P (w[i] = 1) ≤ e−
β′cε2

2 . (136)

We cannot directly deduce from the low probability of
the event w[n′] = 1 in (136), the high-probability of a low-
fraction of entries of w being 1. The Chernoff bound does
not apply immediately , as the entries are not independent.
If (136) would result from process C, then condition 2 in
Lemma 6 would hold, and the Chernoff bound would apply.
For process B, however, condition 2 in Lemma 6 does not
hold, as the placements of the ` blocks in each iteration are
not independent. Rather than using Lemma 6 directly, we
show the Chernoff bound applies, by applying the Harris
inequality in a slightly different way than used in [64].
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Let c′n = c[n′]. For any t,

E
[
Πi∈[n′]e

t·w[i]
]

= (137)

E
[
et·w[n′] ·Πi∈[n′−1]e

t·w[i]
]

=

E
[
E

[
et·w[n′]Πi∈[n′−1]e

t·w[i]|c′n
]]

(a)
=

E
[
E

[
E

[
et·w[n′]|c′n

]
Πi∈[n′−1]e

t·w[i]|c′n
]]

(b)
=

E
[
E

[
et·w[n′]|c′n

]
E

[
Πi∈[n′−1]e

t·w[i]|c′n
]] (c)

≤

E
[
E

[
et·w[n′]|c′n

]]
·

E
[
E

[
Πi∈[n′−1]e

t·w[i]|c′n
]]

=

E
[
et·w[n′]

]
E

[
Πi∈[n′−1]e

t·w[i]
] (d)

≤

E
[
et·w[n′]

]
Πi∈[n′−1]E

[
et·w[i]

]
≤

Πi∈[n′]E
[
et·w[i]

]
.

In the above, (a) and (b) follow from the fact that given c′n,
et·w[n′] is obviously a constant. Inequality (c) follows from
the Harris inequality [65]. Inequality (d) follows from a re-
peated application of the same idea to E

[
Πi∈[n′−1]e

t·w[i]
]
.

By (137), the Chernoff bound can be applied to∑
i∈[n′] w[i]. It follows that for large enough n′, we can

approximate, with high probability 1 −
∑

i∈[n′] w[i]

n′ by the
right side of (136). Inserting into (133), we obtain

β′ −
(
1− e−

β′cε2

2

)
β′(1− ε)

1− β′(1− ε)
(a)≈ (138)

e−
β′cε2

2 + ε
1
β′ − 1

(b)

≤


 2

β′
(

1
β′ − 1

)3

c




1
3

,

where (a) follows from neglecting the second order term

ε · e− β′cε2

2 , and (b) follows from taking ε =
(

2
β′c

) 1
3
.

We next bound the error probability in a round, assum-
ing that all groups failing up to the round’s start have been
recovered.

Lemma 8: At some round, let the number of functioning
devices be n′, and let the effective number of failed device
in the round be n′f . Assume that for some δ, each group
can be recovered if at most

`′ = (1 + δ)n′F
`

n′
(139)

blocks of it are lost.
Then the probability of failure in the round, is

e


− 1

2 βnc
`

e
−

n′
F

`
n′ ·δ

2

2




. (140)

Proof: Let the set of devices failing in the round be
F (i.e., n′f = |F |). Define the vector z whose ith entry
represents the number of elements of the ith group in the
failed devices of the round, i.e., for i ∈ [n′],

z[i] =
∣∣{j | ∃C∈F xi[j] ∈ C

}∣∣ . (141)

It is easy to see that

P (z[i] = x) =

(
`
x

)(
n′−`
n′f−x

)
(

n′
n′f

) . (142)

Since the distribution is hyper-geometric, the z[i] are neg-
atively dependent. From the Chernoff bound,

P
(

z[i] ≥ (1 + δ)n′F
`

n′

)
≤ e−

n′F
`

n′ ·δ
2

2 . (143)

We define a vector w whose ith entry is the indicator of
the group-failure event, i.e.,

w[i] = I

(
z[i] ≥ (1 + δ)n′F

`

n′

)
. (144)

We are interested in the event that w is the all-0 vector,
i.e., no group had many elements in F . Noting that the
elements of w are negatively dependent, and that a group
failed if

∑

i∈ βnc
`

w[i] ≥ 1 = (145)

βnc

`
· e−

n′F
`

n′ ·δ
2

2


1 +

1

βnc
` e−

n′
F

`
n′ ·δ

2

2

− 1


 ,

we have, by the Chernoff bound,

ln


P




∑

j∈[ βnc
` ]

w[j] ≥ 1







(a)

≤ (146)

−

βnc
` e−

n′F
`

n′ ·δ
2

2


 1

βnc
` e−

n′
F

`
n′ ·δ

2

2

− 1




2

2
(b)≈

− 1

2βnc
` e−

n′
F

`
n′ ·δ

2

2

,

where (a) follows from (145), and (b) follows from (126)
and the fact that n′f = O (n′).

A block is pending if it is waiting to be read from or
written to some device. The number of pending blocks
affects the effective number of failures per round.

Lemma 9: Let m be the total number of system-wide
pending blocks in steady state. Then

m / n

(
λβcts +

e
Λ
Ξ − 1

2− e
Λ
Ξ

)
≈ nλ

(
ts +

k + 1
µr

)
βc, (147)
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where

Λ ≈ λβc (k + 1) , (148)
Ξ = µr.

Proof: The inter-failure time of devices from
S is distributed. With high probability, the number
of failed functioning devices in an epoch approaches
(1± o (1)) λnsts; the number of functioning devices is al-
ways in the approximate range [n− nλsts, n] . It follows
that the failure rate of functioning devices normalized by
the remaining number of functioning devices can be upper
bounded by

(1± o (1))
λnsts

(n− nλsts) sts
. (149)

The failure of each failed functioning-device’s block gen-
erates k read requests approximately uniformly distributed
among functioning devices. Since the inter-failure time of
failed devices is exponential, and a random splitting of an
exponential process is itself an exponential process [66],
the read-request process per device is approximately dis-
tributed exponentially with rate

λnβcstsk

(n− nλsts) sts
. (150)

The failure of each failed functioning-device’s block gen-
erates a single write requests and possibly reassignment
requests. By the same reasoning, the process generated
by these requests per functioning device is approximately
distributed exponentially, with rate

λnβcstsk

(n− nλsts) sts

1
k(1− γ)

(a)≈ λnβcsts
(n− nλsts) sts

, (151)

where

β′ = β + 2
nRβ

n
= β

(
1 + 2λsts + 2(λsts)2

)
, (152)

γ =


 2

β′
(

1
β′ − 1

)3

c




1
3

, (153)

and (a) follows from the fact that c is large.

To maintain equilibrium between the contraction and
expansion processes, the number of replacement devices
should be approximately

(
nλsts + n (λsts)

2
)

, (154)

where the first term is due to the expected number of failed
devices from S, and the second term is due to the expected
number of failed replacement devices. By the same reason-
ing as above, the average rate of requests per functioning
device due to the expansion process is

(
nλsts + n (λsts)

2
)

βc

(n− nλsts) sts
, (155)

which by (128) is negligible in comparison to (150) or (151).

Since the sum process of two exponential processes is
exponential [66], the load on each functioning device can
be modelled by an M/D/1 queue. The birth rate is given
by the sum of (150) and (151), which by (128) is approxi-
mately λβc(k + 1). The death rate is µr.

In Section VII we deal with bounds on such queues.
Corollary 1 of Subsection VII-D gives the steady state dis-
tribution of each queue, given the birth and death rates.
Using this and the fact that the lengths of the queues are
negatively dependent, we obtain (147).

C. Simulation Results

In this subsection we show simulation results for the
random-sparing scheme:
• Figure 8 shows the single-layer storage-rate and maximal
fraction of fixable nodes as a function of left and right edge-
degrees (derived in (87) and (82) respectively). As noted,
the rate of this code is sub-optimal, necessitating the use
of the augmented code from Subsection IV-C.
• We have performed 500 tests on the block error-
probability. In each test a random code with m = 10000
left nodes, q̂ = 4, â = 4, α̂ = 1

3 , and 8236 right nodes was
first built. Then, 106 iterations were performed. In each
iteration 3900 left nodes were initially set to be corrupted,
and were then attempted to be fixed. The code succeeded
in every single iteration of every single test.
• Figures 9 and 10 show the number of updated nodes as a
function of the fraction of modified left nodes, for the case
q̂ = 4, â = 7, and m = 10004 left nodes. Note that as pre-
dicted, simulation results coincide with the expected value,
given by (85). For small fractions of left nodes being up-
dated, the number of update-IOs can be approximated as
the number of updated left nodes times average left degree
(al).
• Figure 11 shows the number of nodes, accessed by the
recovery procedure, as a function of the fraction of failed
left nodes, for the case q̂ = 4, â = 7, and m = 10004
left nodes. Note that the assumption of a accesses per
each failed node gives the upper bound on the number of
accessed nodes, as shown in (84).

D. Discussion

In this section we have shown how to create a level em-
ploying random sparing. This scheme appears to be similar
to one independently proposed in OceanStore [35]. From
Theorem 13, though, we deduce that the storage rate for
small and large coding-groups must differ, as opposed to
the uniform coding-rate in OceanStore.

The scheme relies on the use of codes with recovery
locality. It was previously shown that codes with good
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update locality have bad recovery locality, and vice versa
[57]. While this is true when considering a single code, the
conclusion is somewhat different when considering random
sparing. The analysis in Lemma 9 shows that if codes do
not have recovery locality, the load on each device-queue
grows indefinitely. It follows that the redundancy of each
coding group must grow as well. In this case, the update
performance must degrade.

VII. High-Intensity Data

For high-intensity data, high performance codes should
be used. Assume a group of size n is coded in an MDS
code of storage rate 1

n . One such code is the repetition
code, wherein an item is replicated n times. In the setting
of storage, the repetition code is usually termed (multi-
way) mirroring. The repetition code does not require a
read-modify-write sequence of operations to all redundant
items, when a data item is modified. It is easy to show
that it is the only such code (up to trivial variations). This
makes the repetition code a good candidate for use in high
intensity data level.

A possible semi-Markov modelling of the system is shown
in Figure 24. The model consists of n+1 states, A0, . . . , An.
The state Ai indicates that i devices are failed. The model
begins in state A0; and terminates in state An, when data
is lost. The various Λi,j and Ξj,i indicate the transition
rates between states, and we define them later on (they
do not have the exact interpretation of the corresponding
M/M/1 queue values).

At each discrete multiple of td, the system detects the set
of failed devices. Let Ai and Aj be arbitrary states, where
i � j. A transition from Ai to Aj takes place when j−i+1
devices fail in time td. Note that neglecting the occurrence
of two simultaneous events, valid in the M/M/1 queue, is
no longer valid. A transition from state Aj to state Ai

takes place when j − i + 1 devices have been recovered.
The recovery of a device is performed by reading a copy
of the data from operating devices, and writing it to a
replacement device (and therefore requires c

r time).

Note that the assumption that the model state com-
pletely determines the system state, valid in the M/M/1
queue, is not valid. The transition from Aj to Ai depends
on the length of time the system has been in state Aj , as
well as the path by which Aj has been reached.

In general, a more complicated setting may be consid-
ered, where the number of copies is considered, rather than
the number of devices. Exploiting recovery-parallelism, the
number of copies recovered in a given time may depend on
the number of existing copies. We do not analyze this set-
ting in this work.

The use of birth-death processes for finding the MTTDL
has been previously used for the case where the number of
states is small [4], [41], [50]. When the number of states
is large, the ability to recover many devices in parallel,
is lost in the model. Also, as noted above, the exponen-
tial distribution does not coincide with the deterministic
recovery-time, nor does it take into account the detection
latency.

The section is organized as follows. In Subsection VII-
A we model the system in Figure 24 in a way in which
is amenable for finding a lower bound on the MTTDL. In
Subsection VII-B we show a solution to the model in Sub-
section VII-A. In Subsection VII-C we show an improved
approximation for the lower bound. In Subsection VII-D
we use the same ideas to find a simple bound on steady-
state distributions for the M/D/1 queue, a result needed
for Section VI. In Subsection VII-E we show simulation
results on the MTTDL of multi-way mirroring.

A. Modelling the System State

The system in Figure 24 shows the model from the view-
point of the system controller. In a time interval td, many
devices can fail. Devices can be in different stages of re-
covery. This means that each state can be reached from
many different states. The resulting system of equations
is complex. Rather than solving it directly, we consider a
different system and viewpoint.

We consider a system composed of n devices, with failure
CDFs 1 − e−λ̂1t, . . . , 1 − e−λ̂nt (t ≥ 0), respectively. We
will require in particular two cases: the case n = 2 with
arbitrary λ̂1 and λ̂2, and the case of an arbitrary n with
λ̂1 = · · · = λ̂n = λ̂. We consider the same failure-detection
latency and recovery time as in the original system. If a
device fails during the recovery of some other devices, the
recovery process is aborted and re-initiated. An imaginary
observer with zero-delay knowledge of the state of each
device observes the system. We consider the view of this
observer. The model then becomes that in Figure 25.

In this model, it can be shown that neglecting two si-
multaneous events is valid. Note that a solution for this
model is a lower bound on the solution of a original system
in which device failure during recovery does not re-initiate
the recovery process.

Let A(t) be the state at time t. Let

pi,j(h + t, t) = P (A(h + t) = Aj | A(t) = Ai),(156)
pi(h + t, t) = p0,i(h + t, t).
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As opposed to an M/M/k type of setting, it is not possible
to precisely define here

pi,j(h) = pi,j(h + t, t), (157)
pi(h) = p0,i(h + t, t),

since the model state alone does not determine the sys-
tem state. By equating the transition rates between states,
we show that (157) can hold as an approximation, and be
found by a system of approximate differential equations.

Definition 10: Let

Ξ(Λ) = Λ

(
1

1− e−Λ c
r

1−e−Λtd

Λtd

− 1

)
. (158)

Let pi(t) = pi(t, λ̂1, . . . , λ̂n, c
r , td) be defined by the system

of differential equations:

p′i(t) = (159)
Λi−1pi−1(t) + Ξi+1pi+1(t)− (Λi + Ξi)pi(t),

p0 (0) = 1,

p1 (0) = · · · = pn (0) = 0,

for i ∈ {0, . . . , n}, and Λi and Ξi defined as:
• For the case of system of two devices:

Λ0 = λ̂0 + λ̂1, (160)

Λ1 =
λ̂1λ̂2

(
λ̂1 + λ̂2 + Ξ(λ̂1) + Ξ(λ̂2)

)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
,

Ξ1 =
λ̂2

1Ξ(λ̂2) + λ̂2
2Ξ(λ̂1) + λ̂1Ξ(λ̂1)Ξ(λ̂2) + λ̂2Ξ(λ̂1)Ξ(λ̂2)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
,

Λ−1 = Λ2 = Ξ0 = Ξ2 = 0.

• For the case of n identical devices:

Λi =
{

0 , j ∈ {−1, n}
(n− i)λ̂ , otherwise

, (161)

Ξi ={
0 , i ∈ {0, n, n + 1}
Ξ(Λi) , otherwise .

By equating transition rates, we show the following.

Theorem 14: The probability of data loss at time t is
lower bounded by pn(t), given by Definition 10.

Proof: In the new model, recovery does not commence
immediately once devices fail (due to the detection latency
td). If it is known that an exponential event occurred up
to time t+td, then the a-posteriori probability of its taking
place at any time t′ ∈ [t, t + td] is equally likely.

Consider two random variables, tbi and tdi , with respective
PDFs:

Λie
−Λit , (t > 0), (162)

1
td

,
(
t ∈

[ c

r
,
c

r
+ td

])
.

We define a third process t`i = min
{
tdi , tbi

}
. The rate of

the renewal process generated by t`i , is then 1

E[t`
i]

. It can

be shown that

E
[
t`i

]
=

1
Λi

(
1− e−Λi

c
r
1− e−Λitd

Λitd

)
. (163)

Each renewal in the process generated by tli is caused by
either tbi or tdi . We define the probabilities

pb
i = P

(
min

{
tdi , t

b
i

}
= tbi

)
, (164)

pd
i = P

(
min

{
tdi , t

b
i

}
= tdi

)
.

It can be shown that

pb
i = e−Λi

c
r
1− e−Λitd

Λitd
, (165)

pd
i = 1− e−Λi

c
r
1− e−Λitd

Λitd
. (166)

By using the standard technique [66] of equating the
entry and exit rate of each state using the Chapman-
Kolmogorov equations, it can be shown that in this case,

p′i,j(t) =
∑

k 6=j

qk,jpi,k(t)− νjpi,j(t) (167)

holds approximately, where νj is the rate of the renewal
process generated by t`j , and qi,k is the rate of the renewal
process generated by transferring from Ai to Ak.

It follows that we can insert into (167) the following:

qi,i+1 = Λi = pb
i

1
E

[
t`i

] , (168)

qi,i−1 = Ξi = pd
i

1
E

[
t`i

] ,

νi = Λi + Ξi =
1

E
[
t`i

] .

It now remains to find the various Λi and Ξi:
• For the system of 2 devices, the failure rate when in state
A0 is clearly Λ0 = λ̂1 + λ̂2. With probability λ̂1

λ̂1+λ̂2
, the
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device with λ̂2 fails first. In this case, Λ1 = λ̂2 and Ξ1 =
Ξ(λ̂2). Similarly, with probability λ̂2

λ̂1+λ̂2
, Λ1 = λ̂1 and

Ξ1 = Ξ(λ̂1). By applying the Bayes rule, we get:

E
[
t`1

]
= (169)

λ̂1

λ̂1 + λ̂2

1

λ̂2 + Ξ(λ̂2)
+

λ̂2

λ̂1 + λ̂2

1

λ̂1 + Ξ(λ̂1)
=

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)(
λ̂1 + Ξ(λ̂1)

)(
λ̂1 + λ̂2

)(
λ̂2 + Ξ(λ̂2)

) ,

pb
i =

λ̂1λ̂2

(
λ̂1 + λ̂2 + Ξ(λ̂1) + Ξ(λ̂2)

)
(
λ̂1 + Ξ(λ̂1)

)(
λ̂1 + λ̂2

)(
λ̂2 + Ξ(λ̂2)

) ,

pd
i =(

λ̂2
1Ξ(λ̂2) + λ̂2

2Ξ(λ̂1) + λ̂1Ξ(λ̂1)Ξ(λ̂2) + λ̂2Ξ(λ̂1)Ξ(λ̂2)
)

(
λ̂1 + Ξ(λ̂1)

)(
λ̂1 + λ̂2

)(
λ̂2 + Ξ(λ̂2)

) .

Combining (168) and (169), we have

Λ1 = (170)

λ̂1λ̂2

(
λ̂1 + λ̂2 + Ξ(λ̂1) + Ξ(λ̂2)

)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
,

Ξ1 =
λ̂2

1Ξ(λ̂2) + λ̂2
2Ξ(λ̂1) + λ̂1Ξ(λ̂1)Ξ(λ̂2) + λ̂2Ξ(λ̂1)Ξ(λ̂2)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
.

• For the system of n identical devices, when in state Ai,
the time to device failure is clearly distributed exponen-
tially with rate Λi = (n− i)λ̂. Ξi can be found as before.

B. Estimating the MTTDL

In this subsection we modify the method in [42] to solve
(159) for the MTTDL.

Theorem 15: Assume that
1

c
r + td

2

À nλ. (171)

Then the MTTDL of the system in Figure 25 is approxi-
mately lower bounded by

n∑

j=1

1
Λj−1

n−1∏

i=j

(
1 +

Ξi

Λi

)
≈

(
1

c
r +

td
2

)n−1

n!λn
, (172)

where Ξi = Ξ(Λi).
Proof: For the system in Figure 25, the equation

system (159) becomes the following:

p′0 (t) = −Λ0p0 (t) +
n−1∑

i=1

Ξipi (t), (173)

p′j (t) = − (Ξj + Λj) pj (t) + Λj−1pj−1 (t) ,

p′n (t) = Λn−1pn−1 (t) ,

p1 (0) = 1,

where j ∈ [n− 1].

Using the Laplace transform:
∫ ∞

0

pj (t) e−st dt = aj(s), (174)
∫ ∞

0

p′j (t) e−st dt = −pj (0) + saj(s),

we obtain the equation system:

(−s− Λ0)a0(s) +
k−1∑

i=1

Ξiai(s) = −p0 (0) = −1, (175)

(−s− Ξj − Λj)aj(s) + Λj−1aj−1(s) = −pj (0) = 0,

−san(s) + Λn−1 = 0.

Note that once the system enters An, it will not leave it.
It follows that defining the MTTDL by tn, we have

tn =
∫ ∞

0

RS (t) dt =
∫ ∞

0

tp′n (t) dt. (176)

By properties of the reverse Laplace-transform, this is

tn = − d (san(s))
d s

∣∣∣∣
s=0

. (177)

We therefore need to solve the equation system (175) for
an(s). To do so, we apply Cramer’s rule, obtaining

an(s) =
gn(s)
g(s)

, (178)

where

g(s) = (179)

∆




−RO
0 Ξ1 Ξ2 . . . Ξn−1

Λ0 −RO
1

. . . . . .
. . . . . .

Λn−2 −RO
n−1

Λn−1 −s




,

gn(s) = (180)

∆




−RO
0 Ξ1 Ξ2 . . . Ξn−1 −1

Λ0 −RO
1

. . . . . .
. . . . . .

Λn−2 −RO
n−1

Λn−1




,

and

RO
i = Λi + Ξi + s. (181)

We first develop g(s) and gn(s). For the former, we have

g(s) = −sγn(s), (182)
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where

γn(s) = (183)

∆




−RO
0 Ξ1 Ξ2 . . . Ξn−1

Λ0 −RO
1

. . . . . .
. . . . . .

Λn−2 −RO
n−1




.

For the latter, we have

gn(s) = (−1)n+1
n−1∏

i=0

Λi. (184)

Inserting (182) and (184) into (178) and (177), we have

tn =
g′n(0) + γ′n(0)

γn(0)
. (185)

In the matrix within the determinant in (179), we may
add all rows to the last without altering g(s). To the matrix
within the determinant in (180), we may append an all-0
column and the row −s,−s, . . . ,−1, without altering gn(s).
After doing so, we have

gn(s) + γn(s) = (186)

∆




−RO
0 Ξ1 Ξ2 . . . Ξn−1 −1

Λ0 −RO
1

. . . . . .
. . . . . .

Λn−2 −RO
n−1

−s −s −s −s −s −1




−

∆




−RO
0 Ξ1 Ξ2 . . . Ξn−1 0

Λ0 −RO
1

. . . . . .
. . . . . .

Λn−2 −RO
n−1

−s −s −s −s −s −1




(a)
=

∆




−RO
0 Ξ1 Ξ2 . . . Ξn−1 −1

Λ0 −RO
1

. . . . . .
. . . . . .

Λn−2 −RO
n−1

−s −s −s −s −s 0




,(187)

where (a) follows from the fact that the determinant is
distributive over matrices identical in all rows but one.

We note that the determinant in (187) is

s(−1)nBn(s), (188)

where

Bn(s) = (189)

∆




Λ0 −RO
1

. . . . . .
. . . . . .

Λn−2 −RO
n−1

1 1 1 1 1




.

Furthermore, the following recurrence system is satisfied at
s = 0:

Bk(0) =
k−2∏

i=0

Λi + (Λk−1 + Ξk−1) Bk−1(0), (190)

B1(0) = 1.

Solving (190), we obtain

Bk(0) =
k∑

j=1

j−2∏

i=0

Λi

k∏

i=j+1

(Λi−1 + Ξi−1) . (191)

Setting s = 0 in (183), we have

γn(0) = (−1)n+1
n−1∏

i=0

Λi. (192)

Inserting (191) and (192) into (185), we get

tn = (193)
1

γn(0)
d (gn(s) + γn(s))

d s

∣∣∣∣
s=0

=

(−1)k Bn(0)
γn(0)

=

n∑

j=1

1
Λj−1

n−1∏

i=j

(
1 +

Ξi

Λi

)
.

By applying (171) to (158), we have

min
i

{
Ξi

Λi

}
À 1, (194)

and (193) simplifies to

tn ≈

n−1∏

i=1

Ξi

n−1∏

i=0

Λi

. (195)

This can be further simplified by substituting

Λi = (n− i)λ, (196)

Ξi

(a)≈
(

1
c
r + td

2

)
,

where (a) follows from the application of (171) to (158).
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C. Improving the MTTDL Estimation

The system model from Subsection VII-B assumes that
any device failure while recovery, restarts the recovery pro-
cess. This is needed for the definition of the state-transition
rates. This is clearly a drawback. The MTTDL found
in Section VII-B therefore only lower bounds the true
MTTDL. In this subsection we attempt to rectify this by
considering “compound devices”, i.e., devices composed of
a sub-group of devices.

The main point we prove in this subsection is the follow-
ing.

Theorem 16: Assume that
1

c
r + td

2

À 2λ. (197)

Then the MTTDL of the system in Figure 25 is approxi-
mately

(
1

c
r +

td
2

)n−1

2n−1λn
. (198)

We first analyze the failure-time distribution for the gen-
eral case of two devices.

Lemma 10: A system of 2 devices whose failure times
have respective CDFs 1−e−λ̂1t and 1−e−λ̂2t, has a failure
time having an approximate CDF

1− e−
2λ̂1λ̂2

Ξ t (199)

where

Ξ =
1

c
r + td

2

, (200)

assuming that

1
c
r + td

2

À max
{

λ̂1, λ̂2

}
. (201)

Proof: For this case, (159) becomes

p′0 (t) = Ξ1p1 (t)− Λ0p0 (t) , (202)
p′1 (t) = Λ0p0 (t)− (Ξ1 + Λ1)p1 (t) ,

p′2 (t) = Λ1p1 (t) ,

where

Λ0 = λ̂0 + λ̂1, (203)

Λ1 =
λ̂1λ̂2

(
λ̂1 + λ̂2 + Ξ(λ̂1) + Ξ(λ̂2)

)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
,

Ξ1 =
λ̂2

1Ξ(λ̂2) + λ̂2
2Ξ(λ̂1) + λ̂1Ξ(λ̂1)Ξ(λ̂2) + λ̂2Ξ(λ̂1)Ξ(λ̂2)

λ̂2
1 + λ̂2

2 + λ̂1Ξ(λ̂1) + λ̂2Ξ(λ̂2)
.

Solving (202) for p0 (t) and p1 (t), we get

p0 (t) = −r2 + Λ0

r1 − r2
er1t +

r1 + Λ0

r1 − r2
er2t, (204)

p1 (t) =
(Λ0 + r1) (Λ0 + r2)

Ξ1 (r1 − r2)
(−er1t + er2t

)
,

where

r1,2 = (205)

−Λ0 − Λ1 − Ξ1 ±
√

(Λ0 + Λ1 + Ξ1)2 − 4Λ0Λ1

2
=

Λ0 + Λ1 + Ξ1

2

(
−1±

√
1− 4Λ0Λ1

(Λ0 + Λ1 + Ξ1)
2

)
.

Using the approximation in (201), we derive the following
approximations for i = 1, 2: λ̂itd ¿ 1 and λ̂i

c
r ¿ 1. Ap-

plying these approximations to (158), and using the power-
series approximation of ex for small x, we get Ξ(λ̂2) ≈
Ξ(λ̂2) ≈ Ξ = 1

c
r +

td
2

. Applying this to (203), we get

Ξ1 ≈ Ξ =
1

c
r + td

2

. (206)

Applying (206) and using Ξ À max{λ̂1, λ̂2} in (203), we
get

Λ1 ≈ 2λ̂1λ̂2

(λ̂1 + λ̂2)

(a)

≤ 2max
{

λ̂1, λ̂2

}
, (207)

where (a) follows from the Arithmetic - Geometric Mean in-
equality. Combining (207) with (206), we get Ξ1

max{Λ1,Λ2} À
1. Using this fact, we approximate

r1 ≈ − (Λ0 + Λ1 + Ξ1) (208)

r2 ≈ − Λ0Λ1

Λ0 + Λ1 + Ξ1
≈ −Λ0Λ1

Ξ1
.

The lemma follows by the fact that

|r1| À |r2| ⇒ er1t ¿ er2t. (209)

We now prove Theorem 16.
Proof: Lemma 10 gives the approximate failure-CDF

of a system composed of two devices. From (199) we see
that this distribution is exponential with inverse mean

λ̃ =
2λ̂1λ̂2

Ξ
≈ (210)

2λ̂1λ̂2

(
c

r
+

td
2

)
.

Given a system of n  2 devices, we can recursively con-
sider the system as composed of two devices, one simple,
and one “compound”, both with failure times distributed
exponentially. The corresponding state diagram is shown
in Figure 26. In general, we can decompose a system of n
devices recursively, s.t. each device represents a compound
device, an example of which is shown in Figure 27.

When analyzing the reliability of such a system, it is
convenient to view it as a full binary tree (i.e., a tree where
each node has 0 or 2 children), as in diagrams (a) and (b) of
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Fig. 26. Reduction to a compound system.
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Fig. 27. A recursive analysis.

Figure 28. In the tree of each diagram, any leaf is a device
node (indicated by D). Any inner node is a compound node
(indicated by C ), the reliability of which is determined by
its children nodes. The system reliability is that of the
root. Lemma 10 shows how to combine the MTTDL of
two subtrees. Surprisingly, the MTTDL of the entire tree
depends only on the number of leaves, and not on the tree
topology chosen.

D. Lower Bounds on M/D/1 Steady-State Distributions

In this subsection we find a simple bound on steady-
state distributions for the M/D/1 queue. This is needed
for Section VI.

For the case of the M/D/1 queue, equating the transition
rates yields the following simple lower-bound approxima-
tion. In Figure 29 we see a graph corresponding to the

C

C C

D D DC

D D

C

D C

D C

D C

D D

(b)(a)

Fig. 28. A tree formed by the recursive analysis
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Fig. 29. Markov-graph of birth-death process of failed devices.

M/D/1 process. Specifically, assume the process is a birth-
death process, with births generated by a Poisson process
with mean interval times 1

λ , and deaths occurring deter-
ministically after 1

ξ time.

Corollary 1: For the given M/D/1 queue, let Pi be the
steady-state distribution of state Ai. Then

Pi =
(
e

λ
ξ − 1

)i (
2− e

λ
ξ

)
. (211)

Proof: Following [66], we equate the transition rates,
resulting, in a manner similar to the one used in Subsection
VII-A, in

Pi =





ΞP1
λ , i = 0

ΞPi+1+λPi−1
Ξ+λ , i 6= 0

, (212)

where

Ξ = λ

(
1

1− e−
λ
ξ

− 1
)

(213)

by 158.
The proof follows by solving (212), subject to the con-

straint
∑∞

i=0 Pi = 1.

E. Simulation Results

In this subsection we show simulation results for multi-
way mirroring:
• Figures 30, 31, and 32 show the behavior of a system of
two devices (Subsection VII-C) for different settings of λ̂1,
λ̂2, and Ξ. Each of the figures compares the CDFs obtained
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Fig. 30. The CDF of the two-devices system MTTDL, for the case

λ̂1 = λ̂2 = 1
30

and Ξ = 1.

by the following: the numerical solution of a differential-
equation model of the system, the approximated solution
shown in Lemma 10, and the results obtained by a software
simulation of the system of devices. Note that the simula-
tion results coincide with the approximation of Lemma 10
for both λ̂1 = λ̂2 and λ̂1 À λ̂2 settings. This result justifies
the assumption that the MTTDL of a “compound device”
has exponential distribution.
• Figure 33 and 34 show the behavior of a system as a func-
tion of the number of devices (n). Figure 33 compares the
MTTDLs obtained by the following: the results obtained
by a software simulation of the system of devices, the ex-
act and approximated expression from Theorem 15, and
the approximation of Theorem 16. Note that Theorem 16,
based on the ”compound device” approach, achieves the
best estimation. Figure 34 compares, for two different set-
tings, the MTTDLs obtained by the following: the results
obtained by a software simulation of the system of devices,
and the approximation of Theorem 16. Note that Theorem
16 indeed gives a lower bound on the system MTTDL.

VIII. Conclusions and Future Work

In this work we have presented and analyzed codes for
storage systems. We have shown that it is easy to con-
struct LDGM codes which have bounded recovery penalty.
We have shown algorithms which incorporate codes of
this type. Finding bounds and optimal codes subject to
bounded penalty constraints, is left to future research. We
have also analyzed the distribution of the time to data loss
of multi-way mirroring.

The fact that such radically different codes and schemes
can be applied to storage systems, suggests that stor-
age reliability should be hierarchical [24]. This in turn
raises many questions on the number of levels the hier-
archy should contain, the code appropriate to each level,
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Fig. 31. The CDF of the two-devices system MTTDL, for the case

λ̂1 = λ̂2 = 1
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and Ξ = 1.
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900
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and the transition policy between levels. We leave these
interesting questions to future research.

The failure model we considered is one in which entire
devices fail. Other errors which occur in practice are those
of the erasure and substitution of the content of blocks of
devices. The former is very similar to that considered in
this paper. The latter presents formidable difficulties, even
in terms of detection that an error took place. We leave its
treatment to future research.
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