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Abstract

We consider the problem of searching in complex domains for a buggy element� The structure
of the domain determines the set of possible queries at every stage of the search� An important
type of search domain is a Directed Acyclic Graph �DAG�� where one can query every sub�graph�

In this work we focus on reducing the number of sets required to represent a search domain�
Our results include�

� An exact de�nition of general search domains as a set of sets�

� Modeling searching as a two player matrix game� in which a recursive representation allows
us to apply backward induction to tackle the size representation problem�

� The set representation is powerful enough to represent almost any type of search� however�
this generality usually requires exponential sizes� As it turns out� some speci�c types of
search domains �like searching in DAGs� can be represented more compactly by using
the original graph instead of sets� It is therefore important to determine which search
domains �represented as sets� are actually isomorphic to a search in a DAG� We �nd
necessary and su�cient conditions for representing search domains as DAGs� and show
explicit constructions for transforming such search domains into DAGs�

Search problems are often encountered in program testing or debugging� The bug should be
found by searching the program	s control graph using a minimal set of queries� Search problems
also appear in the area of searching classi�ed large tree�like data bases �e�g� the Yahoo	s data
base of the Internet��

� Introduction

We address the problem of �searching in domains� in order to locate a buggy element� The domain
itself is structured such that we can query parts of it� and� if the queried part contains a buggy
element� continue searching in that part alone� If the answer to the query is negative� then the part
has no buggy elements� and the searching process continues checking the complementary part of
the domain� A classical example is the search for a �marked� number in the set ��� � � � � n�� A query
i � ��� � � � � n� returns �yes� if the number is smaller than i� and the search continues with the range
��� � � � � i� ��� Otherwise� it continues with the range �i� � � � � n�� In this case the optimal strategy is
to use a binary search and query i 	 n

� �
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We use set of sets to describe the structure of general search domains� Denote the set of elements
of the search domain by D� For any subset of the search domain �i � D� such that there is a history
of the search process that reaches �i� we postulate a set S�i 	 f�i�� ���� �

i
ik
g� �ij � �i of subsets of

�i� The �
i
js can be used by the searcher to search for the buggy element in �i when �i is reached

during the search process�

The expressive power of the above set representation is evidently high� The requirement to
continue the search with a subset or its complement� when the answer to the query is no� does not
restrict its expressive power� It is simply a way of formalizing that progress has been made in the
search� However� the cost of the set representation in terms of space complexity is too high� as the
number of sets involved with the representation is usually exponential in the size of the domain D�

We consider two ways of reducing the e
ect of the size representation problem�

First� we consider the search process as a two player game �a hider and a searcher�� We want
to compute the Nash equilibrium of the game �in pure strategies�� The matrix game derived from
the set representation of the search domain is too large �at least as large as the size required to
represent the search domain�� We apply backward induction to recursively solve a series of smaller
games and thus overcome the size representation problem�

Secondly� we try to obtain a compact representation of the search domain� This compact
representation satises that in every stage of the search the set of allowed queries can be computed
directly from the representation in a polynomial time in the size of the search domain� In contrast�
in the case of set representation� the set of allowed queries is explicitly listed in advance and is� in
general� of size exponential in the size of the search domain�

Similar compact representations arise in other research areas� In particular� the problem of
nding all minimum cuts in a network may be di�cult� since the output may be of exponential
size� In ����� a binary relation on the vertex set is dened such that a vertex subset induces a
minimum cut if and only if it is a closure of the relation� In addition� in ����� it is shown that
per cutset all minimum cost cutsets can be generated in polynomial time in the number of vertices
in the network� In this work� for a given search domain that meets some su�cent conditions�
we also introduce a binary relation and obtain a DAG representation of the search domain� This
representation� analagous to the network case� enables an e
ective computation of the possible
queries at each stage of the search� In addition� we nd necessary conditions for determining if a
given search domain actually represents a search in a DAG� The proof for the correctness of these
conditions includes an explicit construction of the suitable DAG�

As mentioned above� the compact representation we consider in this paper is a DAG� The tree
and rectangular lattice special cases are treated in ���� In the rst case� a polynomial algorithm
in the size of D is obtained for nding the buggy element� In the second case� it is shown that a
rectangular lattice� which is the Cartesian product of two chains of n elements� can be optimally
searched in at most �dlog ne and at least �dlogne � � steps�

As search in complex domains of the above type has not been studied yet in depth� there are
not many relevant works �either in Game Theory or in Computer Science�� Other models of search
have been considered in the context of Game Theory� e�g�� nuclear reactor inspections by Michael
Maschler� Shmuel Zamir and others in ��� and continuous search games ����
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In the context of computer science� search in Partial Ordered Sets of real numbers was considered
by Linial and Saks ��� ��� where a query z either excludes all elements greater than z from the Poset
or excludes all elements less than z� Linial and Saks proved lower and upper bounds for the number
of queries needed to search in Posets in terms of some of the Poset properties� Note that in spite of
the similarity in denition� their model does not fully satisfy the requirement for the complement�
as a query leaves the �non�comparable� part of the Poset unchanged� Finally� the result in ���
can be viewed as a polynomial in the size of jDj 	 �O�n� log� n� steps� algorithm for searching in
tree�like �or Forest like� Posets�

Next we consider some practical motivations for this study�

Consider the situation in which a large tree�like data structure is being transferred between
two agents� Such a situation occurs when a le system �data base� is sent across a network� or a
back�restore operation is done� In such cases� it is easy to verify the validity of the data in each
subtree by checksum�like tests �or randomized communication complexity equality testing�� Such
an equality test easily detects that there is a fault� but gives no information about which node of
the tree is corrupted� Using search on the tree �by querying correctness of subtrees� allows us to
nd the buggy node and avoid retransmitting the whole data structure�

Software testing is another motivation for studying search problems in Posets �and particularly
in trees�� In general� program testing can be viewed as a two person game� comprised of the tester
and its �adversary�� The adversary injects a fault into the program and the tester has to nd the
fault while using a minimal number of tests� A typical scenario in software testing is that the user
tests the program by nding a �test bucket� �a set of inputs� that meets a certain coverage criterion�
e�g�� branch coverage or statement coverage ��� �� ��� It is plausible that in certain situations it
might be possible to embed such a set of tests �e�g�� the union over all test buckets that meet branch
coverage� in a Poset or in a Tree� such that the requirement for covering all tests can be replaced by
a requirement for searching in this Poset or Tree� Finding an optimal search can save many tests�
as the cost of a search might be considerably smaller than the size of the domain� For example�
the syntactic structure of a program forms a tree� thus� if suitable tests are available� statement
coverage might be replaced by a search in the syntactic tree of the program�

Finally� a possible motivation and direct application is in the area of information retrieval�
consider a �Yahoo� search like scenario� Yahoo contains an immense tree that classies home pages
�currently estimated as about � � �� of the total number of WWW homepages�� In a typical
search� a node is reached and it exposes the next level of the tree �or part of it�� The user chooses
the appropriate branch according to the query she has in mind� But� this tree is quite deep� which
often results in numerous queries before the target is reached� Clearly� such a top�down search
might be ine�cient compared to the optimal search of the Yahoo tree �e�g�� searching in a chain
of n nodes requires n queries if we execute a top�down search and only logn queries if we allow a
query of arbitrary nodes�� At any point in the search� such a search algorithm will allow the user
to start the search in an arbitrary node other than the current root� thus minimizing the number
of queries�

�



d

yes no

d

b

no yes

b
c

a

c

b

b d

d

yesno

c

d

d

yesno

a

a c

b

c

d

d

b

yesno

b d

d

yesno

b

a

c

c

a

b c

d

c

c b

b

b c

yes

b

yesno

no

yesno

d

b

c

no yes

c b

b

b

Figure �� Search domain of a small DAG�

� DAGs as search domains

In this section we consider the special case of searching in DAGs �Directed Acyclic Graphs�� As
explained in the introduction� one can search in DAGs directly by querying sub�graphs� thus elim�
inating the need for the set of sets representation� which is usually too large for practical use� We
dene the special case of searching in DAGs and show the equivalent representation as set of sets�

De�nition ��� Let G 	� V�E � be a DAG� CG�u� the connected component starting at node
u � V and G � CG�u� its complement graph� A search in G for a buggy node v � V involves
querying a node u � V � and if v � CG�u� then the search continues with G� 	 CG�u�� otherwise� it
continues with the complement G� CG�u� �until jGj 	 ���

The search domain in this case is usually complex� since for every stage in the search it contains
not only the set of allowed queries� but also the search domain for each query �CG�u�� in case the
answer is �yes�� and the search domain of the complement G� CG�u� if the answer is �no�� Figure
� describes the search domain of a small DAG with four nodes� The sub�graphs that remain after
a �yes���no� answer are in oval frames� while the possible queries are marked by nodes beside the
dashed lines� It follows that the best strategy is to start to query �b�� and that two queries are
enough�

We use sets as a uniform representation for any type of search domain we may encounter� The
set�s members encode the di
erent parts of the domain that can be queried at any stage� The only
requirement is that the complement set of a query can be further used in the search domain in
case the answer is �no�� Figure � describes the same search as that of gure �� however� it uses
sets of nodes to encode sub�graphs and their complement graphs� Obviously� sets can be used to
represent search in DAGs� however� sets can also be used to encode general types of queries which
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Figure �� Set representation of the above DAG�

do not t the DAG framework� In particular� sets can be used to encode specic instances of search�
For example� adding the query � a� c � or � c� d � or both to the search of gure � will violate
denition ���� yet can be added to that of gure � without any di�culty� Hence� using sets allows
us to encode arbitrary types of queries�

� Game de�nitions

Intuitively� a �searching game� is a search game on the elements of a nite set D �a search domain��
A player� called �the hider� selects an element of D and marks it as �buggy�� Independently� the
other player� called �the searcher�� tries to locate the buggy element of D� In each stage of the
searching game the searcher can query a subset Di � D out of a pre�designated set of allowed
queries fD�� � � � � Dkg� The set of queries is dened inductively for every Di and its complement
DnDi� until jDij 	 � or jDnDij 	 �� The query is true if Di contains the buggy element� and false
otherwise� If the query is true� the game is continued on the subset Di� otherwise� the searcher
continues the game on the complementary subset DnDi� The search terminates when jDj 	 �� i�e��
the buggy element has been detected� The cost of the game is the number of steps needed in order
to nd the buggy element� Note that we allow the hider to change the buggy element during each
stage of the search� as long as the new choice is consistent with the queries made so far� As will be
explained later on� this does not increase the power of the hider in the game�

The game denition includes the denition of� the search domain� the set of strategies� the
game matrix and the game value�

The search domain contains the set of allowed queries and is dened as follows�

De�nition ��� The search domain RD associated with a given set D 	 fd�� � � �dn��g is a collection
RD 	 fS��� � � � � S�ng of indexed � sets of queries S�i 	 f�i�� � � ��

i
ki
g� where �i�� � � ��

i
ki

are possible
queries that can be made at �i� SR satis�es the following rules�

�The set �i forms the index�
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� RD is not empty� i�e�� SD � RD and for each S�i � RD we have that �i �	 ��

� Queries are subsets of D� i�e�� �i � D and �ij � �i�

� The search domain allows us to query until the buggy element has been located� i�e�� for
�ij � S�i� if j�

i
j j � � then S�i

j
� RD and if j�in�

i
j j � � then S�in�ij

� RD�

� If two di�erent queries S�i � S�j are in RD then �i �	 �j�

For example a possible search domain for D 	 fa� b� c� dg may include the following queries�

RD 	

�
S�a�b�c�d� 	 f� a� c ��� d �g � S�a�b�c� 	 f� a� c ��� b �g �

S�a�c� 	 f� c ��� a �g � S�b�d� 	 f� b �g

�

We start the search by selecting one of the queries �ij in �i � SD and if �ij contains the buggy
element we continue with S�i

j
� otherwise� we continue with the complement S�in�ij

� until we query

a set of size one which evidently contains the buggy element� This process dictates the set of
strategies for both players�

De�nition ��� Given a search domain RD� a pure strategy of the hider is a choice function�
H � RD � D s�t� H�S�i� � �i� In other words� for each search domain S�i � RD the hider chooses
an element H�S�i� as the buggy element for this set of queries� A pure strategy of the searcher is
a speci�c search in RD� i�e�� a binary tree QD of queries where the left subtree indicates the search
in case the answer is �yes	 and the right subtree indicates the search in case of a �no	 answer�

Q�i 	

�
�i j�ij 	 �
��ij � Q�i

j
� Q�in�

i
j
� otherwise �where�ij � S�i�

Note that by the above denition� QD must start with SD� For example� a possible search strategy
for the above Ra�b�c�d may start by querying � d � or � a� c � as follows�

Q�a�b�c�d� 	 �� d ��� d �� �� a� c �� �� a ��� a ��� c ��� � b ���

The number of queries needed by Q�a�b�c�d� to nd the buggy element depends on the specic
strategy Hj chosen by the hider� For example� if

Hj�� a� b� c� d �� 	 Hj�� a� b� c �� 	 Hj�� a� c �� 	� a�

then Q�a�b�c�d� requires three queries to nd �a��

In this game the player�s strategies are not sensitive to history �such games are usually referred
as a �games without perfect recall� ��� pp� ���� as for a given strategy QD� each set S�i can appear
only once� so that the �move� of QD in S�i is not dependent on the history� The reason is that �i
can not belong both to a set and its complement�

Note that the sets of all possible strategies of both the hider and the searcher are nite� This
suggests that a search game for a given RD can be dened as a simple matrix game�

�



De�nition ��� Let H�� � � � � Hl and Q
�
D� � � �Q

k
D be the set of all possible hide and search strategies

of RD� Then the search game gD is a zero sum matrix game� such that�

� The columns of the game matrix MD are indexed by the search strategies Q�
D� � � �Q

k
D� while

the rows are indexed by strategies of the hider� namely H�� � � � � Hl�

� The payo� in the Qi
D� Hj entry of MD is the number of queries used by Qi

D until a single
element �the buggy element according to Hj�� is found� The game value Vg is the Nash value

��� i�e�� the payo� for two strategies that are in Nash equilibrium 
���

Note that not all zero�sum matrix games have Nash equilibrium in pure strategies� while Nash
equilibrium is guaranteed for mixed strategies in zero�sum matrix games ���� We conclude the
section with the following example of a searching game which can not be solved using pure strategies�

Consider D 	 fa�� � � � � ang and a searching game gD where the searcher can query only single
elements of D� i�e��

RD 	

������������
�����������

S�a������an� 	 f� a� �� � � � � � an �g
S�a������an� 	 f� a� �� � � � � � an �g
����������������������

S�ai�����an� 	 f� ai �� � � � � � an �g
����������������������

S�an���an� 	 f� an�� ��� an �g
and so forth for every complement

������������
�����������

Consider the mixed strategies of query�selecting each element ai � S� with equal probability for
each possible Hj or Q

j
D� These strategies are in equilibrium since both searcher and hider �see� the

same situation� i�e�� all rows and columns of MD are isomorphic� This symmetry yields that the
value of Vg depends only on the size of D�

Vg 	 Vg�n� 	 � �
�

n
Vg��� �

n� �

n
Vg�n� ���

As Vg��� 	 �� it follows that Vg�n� 	 O�n� �� Note that there can be no pure strategies in
equilibrium� since for any choice of ai� either the searcher or the hider can improve their payo
s�

� Decomposing the search game

In this section we seek to nd another representation of the search game� in which the �big�
matrix of the game is replaced by a set of sub�matrices organized as a DAG� so that the size of
the representation and the ability to compute the Nash equilibrium improve� Computing Nash�
equilibrium in pure strategies �both the value and the strategies� of an n�m matrix game requires
O�n �m� steps for nding an entry in MD which is the maximum in its column and the minimum
in its row ����� In our case the number of strategies might be exponential in the size of the domain
�or even grater� making the computation of the Nash equilibrium impractical�
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We next give an example of a search game demonstrating the source of the expected savings by
using a di
erent representation� Given D 	� d�� � � � � dn �� Rd is dened using the sets

�i 	� di� � � � � dn�i�� � �i 	� di� � � � � dn�i � �i 	� di��� � � � � dn�i�� � �

such that

S�i 	 f�i �ig S�i 	 f�i��g S�i 	 f�i��g i 	 �� � � � �
n

�
� � �

The structure of RD is therefore

��
	 �� 


 �� 	

��
	 �� 


 �� 	

� � � � � ��n
�
��

	 �n
���





 �n
���

	
�n

�
���

Clearly� there are �n possible strategies in this search domain �following every path�� so that the
size of the game matrix is exponential in n� However� the total number of di
erent queries in RD

is only O�n�� The expected improvement will be achieved if we are able to compute the Nash value
directly on the structure of RD� without generating the �big� matrix of the game� In this case� the
Nash value can be computed using a �backward induction� on RD� e�g�� the Nash value of S�i in
the above example will be computed using the Nash�value of S�i � S�i� which will be computed based
on the Nash�value of S�i�� � and so forth� In this way the search game is decomposed into a set of
of sub�matrices according to the structure of RD� As can be seen later� this decomposition yields
a game which is similar to a Game of Exhaustion� as described in ���� �pp� ���� The backward
induction that we use here resembles the one used by Kuhn ����

The actual decomposition of gD is dened as follows�

De�nition ��� The decomposed search game rgD of a search domain RD 	 fS��� � � � � S�kg is a
sequence of matrices rgD 	 fM�� � � � � �M�kg such that�

� The columns of M�i are �
i
�� � � � � �

i
k and the rows are indexed by �i	s elements�

� Let �i 	 fd�� � � � � dng� The entries of each matrix are set such that�

M�i
j
�dl

	

�
�ij dl � �ij
�in�

i
j otherwise

The hider chooses an element dl � D and the searcher chooses a search strategy� i�e�� decides which
�ij to query at each matrix Game�

The value of the game V �rgD� is dened recursively for each matrix M� as the Nash value of
the zero�sum game of M� where all the entries M�ij�dl

	 � have been replaced by the Nash value

of M� plus one�
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Figure �� Example of a decomposed search game and its value�

De�nition ��� The value of rgD with respect to a search domain RD is the Nash value of MD

and is computed recursively as follows�

V rg

	
BBB
M�i 	

	
BBB


� � � �ij � � �

� � � � � � � � �

�in�
i
k � � � � � �

� � � � � � � � �

�
CCCA
�
CCCA 	 Nash value

	
BBBB


� � � � � V rg�M�i
j
� � � �

� � � � � � � � �

� � V rg�M�in�ik
� � � � � � �

� � � � � � � � �

�
CCCCA

This recursive process is applied for every entry in M�i which contains more than one element�
i�e�� j�ij j � � and j�in�ikj � �� Otherwise� if j�ij 	 � then V rg�M�i� 	 �� We say that the value of
a search domain S�i is the Nash�value computed in the above computation for the zero�sum game
associated with M�i�

Consider for example the game of the above search domain Ra�b�c�d� Figure � describes the
matrices of rg�a�b�c�d� and their corresponding Nash values �below�� where we have assumed that
Mb�d 	 Ma�c�

It follows that the set of pure strategies and payo
s are the same in both games �gD and grD��
However� we still have to prove that the decomposed representation rgD can be used to compute
the Nash value of gD� Note that computing VrgD of the search domain given at the beginning of
the section can be completed in O�n�� compared to the exponential time �in n� needed to compute
the Nash�value of gD in that case�

Note that not every matrix game can be decomposed into sub�matrices so that its Nash�value can
be computed using backward induction� For example� the following game has no Nash equilibrium�
however� its decomposition into two sub�matrices using backward induction yield a Nash value of
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Based on the denition of V �rgD�� �see ��� above�� there is a Nash value associated with each
search domain S�i� We assume that each such value is obtained in pure strategies� We thus
associate with each search domain a pair of pure strategies �d� �ij�� which are in Nash equilibrium�

where d � �i and �ij� � S�i � This denes a complete pure strategy for the hider �see ��� above�
for the game rgD �denoted by P�� The searcher�s strategy for rgD �denoted by QD� is dened
inductively starting at RD and using the predetermined query �ij� for each search domain S�i� i�e��

Q�i 	

�
�i j�ij 	 �
��ij� � Q�ij�

�Q�in�
i
j�
� otherwise �

Note that these strategies are not sensitive to the history of the game� and use predetermined
choices� In addition� P and QD are evidently pure strategies in the original game gD� however�
they are not necessary in Nash equilibrium�

To facilitate the proof of the next claim� we denote by P � �i� the restriction of the hider
strategy P in gD to the search domain induced by S�i � P � �i is clearly a hider strategy in gS�i �
Similarly� QD � �i is the search strategy we get in gS�i by inductively starting at S�i and using

the predetermined query �ij� for each search domain S�j � as was done for RD�

Lemma ��� �P �QD� de�ned in the above paragraph is a Nash equilibrium in gD�

Proof� For a search domain of size � the claim is trivial� We assume correctness for all M�i matrix
games that appear in the entries ofMD �that is� for all search domain S�i that appear in the entries
of MD�� Thus� we assume by induction that for all �i �	 D �P � �i�QD � �i� is a Nash equilibrium
in gS�i �the sub�game associated with S�i in gD and grD respectively��

By the induction assumption� if one of the players deviates from �P �QD� in gD after the rst
move� he will lose� Therefore� the only case to consider is a change of the rst move in P or QD by
either player in gD� Let H and Q be a pair of strategies for the hider and the searcher in gD and
rgD�

� m�H�Q� be the payment in gD for playing �H�Q��

� �
H�Q

is the search domain that rgD reaches after the players have played the rst move in
�H�Q��

Assume that the searcher deviates from QD in the rst move to Q�� Then� by the induction
assumption� we get that

m�P � Q�� 	 � �m�P � �
P�Q�

� Q� � �
P�Q�

�
induction

 � �m�P � �
P�Q�

�QD � �
P�Q�

� 	 � � V rg�M�
P�Q�

� �

��



Since �P �QD� is in Nash equilibrium in MD� we get that

� � V rg�M�
P�Q�

�  � � V rg�M�
P�QD

�
induction

	 ��m�P � �
P�QD

�QD � �
P�QD

� 	 m�P �QD� �

Hence� m�P � Q��  m�P �QD�� and since the same argument can be applied to a deviation of the
hider� we get that any deviation from �P �QD� in gD will cause both players to lose� �

Alpha�beta pruning techniques can be used to some extent to optimize the computation of the
Nash equilibrium on the DAG of matrices� For example� assume that the current maximum of a
column in M�i is m and we wish to compute the Nash value of the next entry M�i

k
in that column�

During the evaluation of M�i
k
we nd that the minimum of Nash values in some row of M�i

k
is less

than m� Clearly there is no need to further evaluate the remaining Nash�values in that row� as the
outcome Nash�value of M�i

k
of the current column can not exceed m�

� Search domains versus search in graphs

In this section we consider a di
erent type of solution to the problem of the large space required
to represent search domains� Basically� we observe that in several generic cases of search domains
�namely� searching in graphs or trees� there exists a more compact representation of RD� �namely
the graph or the tree itself�� Consider the size of a search domain RG corresponding to the search
in a DAG �directed acyclic graph� G 	� V�E �� where each connected component in G forms a
query� If the query is answered by a �yes� the search continues on the queried connected component�
otherwise� the search continues in the connected component�s complementary sub�graph� When G

is known� we can use a set of nodes to identify a search domain� i�e�� use RV instead of RG� For
example� the search domain of the following graph G is as follows�

G 	
a �� c

� �
b �� d

S�a�b�c�d� 	� b� d �� c� d �� d � all subgraphs in G

S�b�d� 	� d � S�c�d� 	� d � theirsubgraphs

S�a�c� 	� c � S�a�b 	� b � complements ofb �� d and c �� d

S�a�b�c� 	� b �� c � complement of d in G

���

Clearly� the size of RV might be exponential in jV j 	 n� For example� the search domain of a
rooted star �a tree with n � � nodes and n leaves� contains at least �n di
erent sets��

Obviously� we could have used the graph itself as a compressed representation of the search
domain RG� since all the information regarding sub�graphs and their complements can be directly
obtained from the graph itself� For example� we can obtain a search strategy for a given DAG
G 	� V�E �� by nding a node u � V that minimizes the di
erence between the size of the
sub�graph rooted at u and the size of its complement �e�g�� the node b in the above example��
Clearly� such a node can be computed by an exhaustive search in n� steps� and can be used as the
rst query of the underlying strategy� The rest of the nodes in this strategy can be found using
the same procedure on the sub�graph rooted at u and on its complement� This might not be the
optimal strategy for the graph� however� it can be used as a good approximation for the optimal

�It is possible to show that on the average the size of the DAG�s search domain is exponential in n�

��



strategy� if the query structure is somewhat similar to a binary query structure� e�g�� the degree of
G is bounded� Moreover� if G is a tree� then the algorithm proposed in ��� can be used to obtain
an optimal strategy in O�n� log� n� steps� applied directly on the tree itself�

It is therefore better to represent search domains as trees or graphs� and avoid the penalty
involved with the oversized general representation RD� However� as will be shown next� not every
search domain can be represented as a DAG� It is therefore important to determine whether a given
search domain RD can be so represented� In this section we nd such conditions and show that
they can be used to actually construct a search graph out of a given search domain that satises
these conditions� We refer to the resulting graph as a �search graph� which is a �compressed�
representation of a given search domain RD� Formally we require that every search strategy for
RD �that satises the abovementioned conditions� will be a search strategy in the resulting search
graph having the same payment� and vice�versa� Consequently� an optimal strategy for searching
in the search graph is an optimal strategy for the original search domain�

Given a search domain RD� let G� denote a possible graph for the sub domain S� � RD such
that an optimal search algorithm in G� is also an optimal strategy for the search game g�� It is
logical to assume that if � � S� then G� is a sub graph of G�� The reason is that there must
be a node in G� that corresponds to �� hence� a �yes� answer on that node will leave us with G��
This observation can be used to show that not every RD can be compressed into a search graph�
Consider� for example� the search domain RD given by

S�a�b�c� 	 f� b� c �� a� b �� c �gSb�c 	 f� c �gSa�b 	 f� b �gg �

The only graph possible for Sb�c is a path b �� c� as the other alternatives �such as the graph with
no edges� will not represent Sb�c 	 f� c �g accurately� If we complete G�a�b�c� to a �� b �� c�
we contradict the fact that � a� b �� S�a�b�c� is a legal query� Any other completion of b �� c

leads to a similar contradiction� Consequently� there is no search graph for S�a�b�c�� We therefore
seek to nd necessary and su�cient conditions that determine whether or not the search in a given
RD can be compressed into a DAG� We also seek some e
ective construction to transform a search
domain that satises these conditions into a DAG� so that the computation of a search strategy
can be made e�cient�

The proposed criterion is based on a simple observation� namely� that for every set � � S� there
must be a unique node v � G� such that querying v in G is equivalent to querying � in S��

The discussion below is focused on search domains meeting the following two conditions�

� For every S� there is a history �i�e�� a legal search and �hiding� sequence� that reaches S��

� The singletons search domain are all members of RD� i�e�� for every d � D� Sd 	 fdg � RD�
A search in domain problem meeting this condition is called a search in domain problem with
singletons�

As there is no use in searching sub�domains that are never reached� and as every search in domain
problem can be completed to a search in domain problem with singletons without a
ecting its
value� the conditions mentioned above don�t� intuitively� restrict the family of �search in domain�
problems under consideration�

��



In what follows we concentrate on nite acyclic connected graphs with a unique root vertex and
at least two vertices� We usually refer to them simply as graphs�

For a graph G 	 �V�E� we denote the connected component starting at v � G by CG�v��
The unique root of G is denoted by rG�

Given two graphs G� and G�� we denote by G� �G� the graph obtained from G� by removing
the vertices of G� and removing edges as required� In addition� we say that G� is a successor of
G�� denoted by G� � G�� if either

� G� is a connected component of G�� I�e�� G� 	 CG��v��

� or G� is a �complementary� of a connected component� I�e�� G� 	 G� � CG��v�

In both cases v is not the unique root of G��

For a given graph G� we dene a set of graphs �G as follows�

� G� 	 G

� Gi 	 fG
�

j Gi�� � G
�

g� i � �

�G 	
S�
i � �Gi

Lemma ��� � G
�

� �G� G
�

is a �nite acyclic connected graph with a unique root�

Proof� The proof is by induction on the construction of �G� If G
��

	 CG��v� then the unique
root of G

��

is v� If G
��

	 G
�

� C
G
� �v�� then the unique root of G

��

is r
G
� �

Lemma ��� �G is �nite�

Proof� G
�

� G
��

� hence jV �j � jV ��j� so that after a nite number of steps Gi 	 �� In addition�
G is nite� thus �G 	

S�
i � �Gi is nite� �

In what follows we refer to G and V interchangeably when the meaning is clear from the context�

De�nition ��� For a graph G 	 �V� E�� de�ne RG as the search domain for G as follows�

� The initial set for RG is D 	 V �

� � G
�

� �G� the set of queries at G
�

is given by S
G
� 	 fC

G
� �v�j there is a path from r

G
� to v in G

�

g�

� RG 	 RD 	 f SG� j G
�

� �Gg

It is easy to see that this denition is the same as the intuitive denition of RG given at the

beginning of this section� We use the notation u
G
�� v to denote that v is a child of u in G�

Lemma ��� Given a graph G� RG is a legal search domain satisfying de�nition ����

��



Proof� Using the denition of �G it follows that every condition of denition ��� is satised� For
example� we have to prove that if �ij � S�i and j�i � �ij j � � then S�i � �i

j
� RD� However�

�ij � S�i i
 � G
�

� �G s�t� r
G
�

G
�

� v � �ij 	 C
G
� �v� and S�i 	 S

G
� therefore G

��

	 G
�

� C
G
� �v�

and G
�

� G
��

� thus G
��

� �G� If G
��

� �G then S�i��ij
	 SG�� � RG� �

Next we obtain necessary conditions that any RG satises�

Lemma ��� RG meets the following conditions�

� For all S�i � RG there is a unique element r�i �called the root vertex� such that r�i 	 �i �
S
j �

i
j�

� S�i��ij�
	 f � j � 	 �ij � �ij� � j �	 j�g� The last equality is up to an empty set ����

� if l �	 i and �lk � S�l 	 S�i
j�

and �ij� � S�i then �lk � S�i

� If �ik� �
i
j � S�i and �ik � �ij then �ik � S�i

j
�

� Given the sequences f�ig
n
� and f�

�

ig
n��
� � n  � such that �i�� � S

�
�

i
and r�i 	 r

�
�

i
� � �

i � �n � ��� there exists a sequence f�ig
n
� such that �i�� � S�i � � � i � �n � �� and

r�i 	 r�i� � � i � n

Proof� Let B 	 f v j �r
G
� � v� � E

�

g be the set of children of r
G
� in G

�

	 �V
�

� E
�

� � �G then

by the construction of RG� we get that V
�

� r
G
� 	

S
v�B CG

� �v� 	
S
�j�SG�

�j � Thus� SV � �also

denoted by SG� satises the rst condition�

Next we show that S�i��ij�
	 f �ij � �ij�gj ��j� � If �ij� � S�i then there exists a sub�graph

G� such that S�i 	 S
G
� � In addition� there exists v� � V

�

where �ij� 	 C
G
� �v��� Furthermore�

v� is the child of r
G
� �i�e�� r

G
�

G
��

� v� �� yielding that G
��

	� V ��� E�� � 	 G
�

� C
G
� �v�� where

�i � �ij� 	 V ��� Thus�

S
G
�� 	 SV ���VC

G
�
�v�� 	 fC

G
�� �v� j r

G
��

G
��

� vg �

Using r
G
�� 	 r

G
� we get that S

G
�� 	 fC

G
�� �v�j r

G
�
G
��

� vg� The second item follows since every
connected component in G�� is formed by the �subtraction� CG

�� �v� 	 CG��v� � CG��v��� hence
satisfying the condition S�i��ij�

	 f �ij � �ij�gj ��j� � The third and fourth claims are trivial� Next

we prove the fth claim�

�i� �
�

i � �G� � � i � �n � �� thus �i and �
�

i are sub�graphs of G with one root� namely r�i 	
r
�
�

i

	 ri and �i� �
�

i � CG�ri�� Likewise� rn 	 r�n and �n � CG�rn�� Let �i 	 CG�ri�� � � i � n�

By the denition of �i we have that r�i 	 r�i � � � i � n� In addition� �i�� � S
�
�

i
� � � i � �n� ���

Thus� by the denition of �G there is a path from ri 	 r
�
�

i
to ri�� 	 r�i�� in �

�

i � �G and thus in

G� Therefore� �i�� 	 CG�ri��� � �i 	 CG�ri�� In addition� �i 	 CG�ri� � SD and thus by the
fourth claim above �i�� � S�i � �

��



The above conditions are also su�cient to construct a search graph�

De�nition ��� The search graph G 	� V�E � of a given search domain RD 	 fS��� � � � � S�ng
that satis�es the conditions of Lemma ��� is constructed as follows� The vertices of G are the
elements of D� i�e�� V 	 D� The set of edges E include all edges �r�i� r�l�� such that

� �ik � S�i � S�i
k
	 S�l � and there is no �ij � S�i such that �ik � �ij�

For example� applying this construction on Ra�b�c�d of example � will reconstruct the original
graph� This is because �

� a �� b and a �� c are in the graph since r�a�b�c�d� 	 a� r�b�d� 	 b� r�c�d� 	 c and
� b� d ��� c� d �� S�a�b�c�d�� and there is no � � S�a�b�c�d� that contains either � b� d � or
� c� d ��

� b �� d is in the graph since r�b�d� 	 b and d � S�b�d� �similarly we obtain that c �� d is in
the graph��

� There are no additional edges in the graph� For example� even though d � S�a�b�c�d�� there
exists �ij 	� b� d �� S�a�b�c�d� such that � b� d � contains � d ��

Note that every vertex v � G is named by possibly more than one r� element �at least one is
guaranteed� as we assume a search in domain problem with singletons�� For a v � G denote by
R�v� the set of all r�s such that v 	 r�� As we concentrate on search in domain problems with
singletons� we have that

S
v � G R�v� 	 V 	 D�

We rst prove the following claims�

Lemma ��� Let RD satisfy the conditions of Lemma ��� and G the corresponding search graph
obtained by using the construction of de�nition ���� Let G� 	� V �� E� �	 CG�v� be a connected
component in G� if v 	 r�i for some �i � SD then V � 	 �i�

Proof� Note that it is not clear a�priori that v is the root of some set in RD� however� as v � D�
then it may happen that v 	 r�i� In this case� for every node vk � V � there is a path v� �� v� ��
� � � �� vk� such that v� 	 v 	 r�i� By the construction of denition ��� and the fth condition of
lemma ���� each vj 	 r�ij such that �ij � S�ij�� � vj�� 	 r�ij�� and so forth� until v� 	 r�i� 	 r�i�
The transitiveness of the third condition of lemma ��� implies that each �ij � S�i � yielding that
vk � �i and V � � �i�

For the other direction� assume that d � �i� We will then construct a path in G from r�i
that ends in d� yielding that d � V �� If d 	 r�i then we are done� Otherwise� let i� 	 i since
r�i� 	 �i� ���

i�
j � then there exists �i� 	 �i�j� such that d � �i� and �

i�
j�
is maximal �namely there is

no �i�j� � S�i� such that �i�j� � �i�j��� By the construction of G there must be an edge � r�i� � r�i� ��
It is evident that this process can be repeated until we reach a query �ik such that �ik 	 d� �

Another claim that is used associates a graph in ��G� with every S�i � RD�

Lemma ��� For any given S�i � RD there is a graph G� � Gk of �G such that r�i 	 root�G���

��



Proof� Let Q 	 �i� � �i� � � � � � �ik be a sequence of queries in RD that reaches S�i � such that �i� � SD
and �ik 	 �i and either �ij � S�ij�� �if the answer is �yes�� or �ij � S�ij����ij�� � In addition� we
chose Q to be maximal� i�e�� if �ij � SX then there is no other set in SX that contains �ij � By the
construction of G and the denition of �G� there is a sequence G�� ���� Gk such that G� 	 G�Gj � Gj

and either Gj 	 CGj���r�ij � if the answer for �ij is �yes� or Gj 	 CGj���Gj�� �r�ij � if the answer

for �ij is �no�� Thus� we get that r�i 	 root�Gk�� �

In what follows� and when it is clear from the context� we use a connected component CG�u�
to denote the set of nodes Vu of CG�u�� In addition� we sometimes automatically refer to nodes as
roots of queries� i�e�� use r� instead of u� v � G� This is justied using the following claim�

Claim ��� If CG��u� 	� ��E �� SCG��u� 	 S� and S� � RD then u 	 r��

Proof�

r� 	 � �
�

�j�S�

�j 	 � �
�
v ��u

CG��v� 	 � �
�

�u�v��G�

CG��v� 	 CG��u��
�

�u�v��G�

CG��v� 	 u

�

We can now show that the conditions of Lemma ��� are su�cient� and allow us to construct a
search graph�

Theorem ��� Let G be a search graph obtained by the construction of de�nition ��� applied to
RD� Let RG be the search domain induced by G according to de�nition ���� then RD 	 RG�

Proof� The proof is by induction on the construction of �G 	 fG�� G�� � � � � Gt� � � �g� i�e�� showing
that the theorem follows if each G� � Gt satises a certain claim� We next explain why an induction
on the construction of �G covers RG and RD� The rst set is covered� as RG is dened by the
inductive construction of �G� The second set RD is covered by this induction� as by Lemma ���
every S�i is �covered� by some graph in �G�

The induction claim is that for any G� 	� V �� E� �� Gt we have that SG� 	 S�i � where r�i is
the root of G� according to the construction of Lemma ��� and SG� 	 fVuj CG��u� 	� Vu� Eu �

� u � G�� u �	 root�G��g� Note that this also implies that V � 	 �i as �i 	 r�i
SS

��S�i
�j �

The induction base� SD 	 SG� holds as follows�

� By the construction of G and the rst condition of ���� it is clear that rD 	 root�G�� For
any u � G� u �	 root�G� there is a path in G� u� 	 rD� u�� � � �uk 	 u that leads to u� The
construction of G �denition ���� and the fth condition of lemma ��� yield that uj 	 r�ij �
such that �ij � S�ij�� � Using the conditions of Lemma ��� we get that �ik � SD� By Lemma
��� Vu 	 �ik � hence Vu � SD and SG � SD�

� For � � SD either � rD� r� �� G or by the construction of G� there exists �� � SD �maximal�
such that � � �� and � rD� r�� �� G� This process can be repeated forming a path in G

from rD to r�� Now� using Lemma ��� yields that CG�r�� 	 �� thus � � SG and SD � SG�

��



Assume correctness for all G� � Gt and consider G�� � Gt���
First case G�� 	 CG��v�

By the induction hypothesis CG��v� 	� ��E � such that � � SG� 	 S�� where G
� 	� ��� E �

and root�G�� 	 r�� � The goal is to prove that S� 	 SCG��v�� Let CG��u� 	� �� ��� �� � � SCG��v��

By the induction claim we get that � � S�� � Clearly� � � � as CG��u� is a connected component of
CG��v�� Thus� the last condition of Lemma ��� yields that � � S�� and SCG��u� � S��

For the second direction� assume that � � S� and � � S�� � By the third condition of Lemma
���� � � S�� � Hence� by the induction claim there is some connected component CG��u� 	� �� ��� ��
yielding that

CG��u� 	 � � � 	 CG��v� �

The fact that CG��v� is a connected DAG� yields that there must be a path from v to u in G�� Thus�
� 	 CG��u� � SCG��v�� so that S� � SG�� �

Second case G�� 	 G� � CG��r�� where � � SV �

Let r�� be the root of G
� and u

G
�� v denote that there is a path from u to v in G� By the induction

hypothesis V �� 	 V � � CG��r�� 	 �� � �� hence

SG�� 	 fCG���u�j r��
G��
�� u� u � �� � �g

By claim ��� u 	 r� such that � � SG� � yielding that

SG�� 	 fCG���r��j r��
G��
�� r� � r� � �� � �� � � S��g �

Using the fact that G� is connected we get that

SG�� 	 fCG��r��� CG��r��j � � S��g � � �

�Note that empty sets are generated by the intersection of CG��r�� that is contained in CG��r����
By the second condition of Lemma ��� and the induction claim� we get that

SG�� 	 f� � �j � � S��g � � 	 S���� �

�

For a graph G a search algorithm is naturally dened as a pure strategy in RG� Thus� if a search
in domain problem meets the conditions of ���� an algorithm that can e�ciently search graphs can
be used to search for the buggy element in RD�
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