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Hierarchical Storage-Reliability and
Object-Based Storage

Ami Tavory† , Vladimir Dreizin†, Shmuel Gal‡ , and Meir Feder§

IBM Haifa Research Laboratories
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Abstract— Networked storage-systems typically use codes
to protect data from failures. In this work we deal with
aspects of hierarchical reliability and object-based storage
schemes. A hierarchical-reliability scheme maintains devices
employing different coding schemes, and transits data be-
tween these groups based on activity level. Object-based
storage utilizes basic storage-devices storing variable-sized
objects, as opposed to blocks.

The use of hierarchical object-based storage, requires a
policy to transition data between different levels. We discuss
such a policy for a two-level system, and show how to extend
it for a multiple-level system.

We then show an information-theoretic interpretation
for the need for hierarchical reliability, and show implica-
tions for the necessity of hierarchical reliability schemes as
the growth-gap between storage-devices’ capacity and IO-
bandwidth continues.

I. Introduction

Storage systems typically use some form of an ECC
(error-correcting code), e.g., RAID [1], in order to protect
data blocks from device failures. Most storage systems em-
ploy the same coding technique to protect all data blocks.
This might be improved upon in some ways.

It was first observed in [2] that highly-active data should
be protected using high-performance codes, while relatively
inactive data should be protected using cost-efficient codes,
yielding a hierarchical reliability scheme. In a hierarchi-
cal reliability storage-system, various levels are maintained.
The levels protect data according to importance, but using
schemes of different IO-performance. Based on the activity
levels of data, they should be constantly transited to the
appropriate level. Naturally, a cybernetic storage system
should have some automated policy to perform this, similar
to a paging policy in a cache system.

There are some differences between this problem and
that of a cache paging problem. In most paging problems,
different components are maintained, some of which are
effectively faster than others. This might be due to their
composition from differen types of hardware, (e.g., RAM
versus disk drives), or due to their differing locations in
respect to a client (e.g. network caching). The interesting
point from [2] is that a paging-like setting occurs because
of a choice to handle data, stored in similar components,
in different ways. We show why this choice is more like a
necessity, in Section ??.

† Also at the Dept. of EE-Systems, Tel-Aviv University.
‡ Also at the Dept. of Statistics, University of Haifa.
§ At the Dept. of EE-Systems, Tel-Aviv University.

It should also be noted that the performance metrics of a
transition policy differ substantially than those in a classic
paging problem. We define this in detail in Section II.

The use of storage objects, as opposed to blocks, can also
assist in improving storage reliability. A storage object is
a logical entity composed of data considered by its creator
to be related. The use of objects allows to exploit access
correlation and user-defined attributes [3]. In the context
of reliability, it is natural to protect data in object level,
since this complies with the expected usage correlation.

The granularity of objects allows also the assignment of
a UEP (unequal error-protection) attribute to data, deter-
mining the extent to which it should protected. In prac-
tice, data are not all important to the same extent [4]. Less
important data can be protected using lower-redundancy
schemes than used for more important data. In the set-
tings of storage reliability, it might seem that the benefits
of UEP are primarily in conserving storage space. We show
in Section II that the benefits are primarily in improving
the competitiveness of the transition policy.

Related Work. Reliability in storage systems was orig-
inally studied in the context of small-capacity systems [5],
[6], [1], and in conjunction with performance improvement
via parallelism, e.g., RAID. The schemes were later ex-
tended in some directions. Concatenated codes were stud-
ied, e.g., two-dimensional codes [7], and new RAID levels
[8]. Questions on coding-group placement within devices
were studied, e.g., various distributed striping and sparing
techniques [9], [10], [11], [12], [13], [14]). Effects of physical
device-topologies were studied [15]. Storage reliability via
coding was extend in the direction of disaster recovery as
well [16].

The important idea of hierarchical protection of data
based on data activity was shown in work on HP-
AutoRAID [17], a work to which ours is an extension. Dif-
ferential coding based on data activity was studied in the
context of very large, concrete systems [18], [19], [20].

The important concept of online competitiveness for the
analysis of cache paging-algorithms, has been found quite
some time ago [21], [22]. There has been much research
in evolving this concept, e.g., limiting the power of offline
adversaries [23], [?], extending the setting of the problem
to varying access sizes and costs [24], [25], [26], and using
more realistic models of hardware [?], [?].

Our Contribution. In this work we show an algo-
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rithm for transiting data between levels of a hierarchical-
reliability storage-system, a problem which we show differs
from that of classic cache-paging. This algorithm takes
into account the differing sizes and costs associated with
variable-sized data which need be protected according to
different protection-requirements. We also show the non-
competitiveness of any reliability scheme which ignores dif-
ferent protection-requirements. We show how to extend
a two-level transition policy into a multi-level transition
policy, using a binary decomposability analysis, which is a
simple observation generalizing previous results obtained
through complicated analysis.

We also give an information-theoretic interpretation for
the requirement of hierarchical protection. We show lower
bounds on the number of devices required, the average
load of reliability-related operations per device, the average
coding-group size, and the average update penalty. These
bounds hold regardless of specific codes, data-transition
policies, and device-replacement policies. Although these
bounds are weak in the sense that they only prove the
eventual necessity of multi-levelled reliability schemes as
the growth-gap between device capacity and IO-bandwidth
continues, we hope that they will lead into insight allow-
ing to determine the number of levels required for practical
application.

Paper Organization. The remainder of this paper is or-
ganized as follows. In Section II we show a level-transition
algorithm. In Section III we show a justification for the
necessity of hierarchical reliability.

II. Data Transition between Levels

A hierarchical reliability scheme composed of increasing-
sized levels requires a data transition policy. Ideally, the
high performance (and smaller) levels should contain the
data required by the users. The challenges here are simi-
lar to those of hierarchical-memory data-caching, but are
complicated by what we will show are time changing costs.

In this section we show a data transition policy. The set-
ting we assume is relatively restricted. We consider a two-
level system, in which data are accessed only via the higher
level. We consider policies in which blocks are transferred
in entire-object granularity, only entire-object modification
takes place, and objects are evicted to a lower level consec-
utively and to uncorrelated lower-level placements. This
corresponds to a system in which inter-object correlation
is total, and cross-object correlation is non-existent. We
defer a fuller solution to future work.

The section is organized as follows. In Subsection II-A
we define precisely the transition costs. In Subsection II-
B we show a competitive migration policy. In Subsection
II-C we analyze some common solutions in use.

A. Performance Costs in Hierarchy levels

We first precisely define the transition costs and compar-
ison measures.

We consider two levels composed of sets of blocks, S0 and
S1. They are the higher and lower levels, respectively. The

size S0 is |S0| = k; the size of S1 obeys |S1| À |S0|. The two
levels contain objects. We denote the set of objects they
hold by L0 and L1, respectively. In general, L0

⋂
L1 6= ∅.

The policy handles a sequence of M requests ρ =
[ρ1, . . . , ρM ]. Each request ρj is a pair (ej , tj). The en-
try ej identifies the pertinent object. The entry tj is either
R or W , depending on whether the request is of type read
or type write.

The cost of each operation depends on objects’ locations
and modification state. The cost incurred by a request
(ej , R) is 0 if ej ∈ L0; otherwise, the cost is denoted by
fR

ej
. If an unmodified object e is deleted from L0, then the

deletion cost is 0; otherwise the cost is denoted by fW
e .

The number of blocks required by an unmodified e ∈ L0 is
denoted by

∣∣eR
∣∣. If the object is modified, an additional∣∣eW

∣∣ blocks of redundancy are required. We deal with fixed
rate codes, and so for any two objects ei and ej of the same
priority,

∣∣eR
i

∣∣
∣∣eR

i

∣∣ +
∣∣eW

i

∣∣ =

∣∣eR
j

∣∣
∣∣eR

j

∣∣ +
∣∣eW

j

∣∣ , (1)

regardless of the sizes of ei and ej .

The data transition problem above has much similarity
to the problem of memory-hierarchy online paging.

It is well known [27] that in such settings, absolute per-
formance measures for an algorithm are meaningless. We
briefly review two meaningful comparison measures.

Let A be an online paging algorithm, i.e., its response to
ρ[j] does not depend on ρ[j′] for any j′  j. Let A(k) de-
note an instance of it for which |L0| = k. E.g., A is the LRU
(least recently used) algorithm, and A(k) is LRU maintain-
ing k items. We denote the cost incurred by A(k) on ρ by
fA(k)

(
ρ
)
. To assess how relatively good is fA(k)

(
ρ
)
, we

require the following two costs [23]:
• The off-line cost- let O denote the optimal off-line algo-
rithm (i.e., with advance knowledge of ρ). Let O(h) denote
its instance when |L0| = h (h ≤ k). The cost incurred by
this instance due to ρ, is the off-line cost, fO(h)

(
ρ
)
.

• The un-cached cost- let fρ[j]=(ej ,tj) denote the un-cached
cost of the jth operation, i.e.,

fρ[j] =

{
feR

j
, tj = R

feW
j

, tj = W
. (2)

The un-cached cost of the sequence is
∑M

i=1 fρ[j].

The following definition [21] defines the competitiveness
of an on-line algorithm relative to an optimal off-line algo-
rithm.

Definition 1: An algorithm A is α = α(h, k) competi-
tive, if there is a constant γ = γ(h, k), such that for any
request sequence ρ,

E
[
fA(k)

(
ρ
)] ≤ α · fO(h)

(
ρ
)

+ γ. (3)
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The competitiveness coefficient of A, αA,h,k, is the infini-
mum of any such α which satisfies (3), i.e.,

αA,h,k = (4)

inf
α
∃γ=γ(h,k)∀ρE

[
fA(k)

(
ρ
)] ≤ α · fO(h)

(
ρ
)

+ γ.

In the above, our definition differs from that of [23], by
the additive γ element.

Subsequently, a modified definition of competitiveness,
loose competitiveness [28], [23], was created. The new ver-
sion has advantages in its not allowing ρ to be too closely
tailored to k, and limiting the effect of any ρ for which the
absolute cost is too low. The following is a modified version
of loose competitiveness.

Definition 2: An algorithm A is α̂ = α̂(ε, δ, k)-loosely-
competitive, if there is a constant γ = γ(k), such that
for any request sequence ρ, at least (1 − δ)k of the values
k′ ∈ [k] satisfy

E
[
fA(k′) (

ρ
)] ≤ max



α · fO(k′) (

ρ
)
, ε ·

∑
ρ∈ρ

f (ρ)



 + γ. (5)

The (ε, δ, k)-loose-competitiveness coefficient of A, α̂A,ε,δ,k,
is the infinimum of any such α̂ which satisfies (5), i.e.,

α̂A,ε,δ,k = (6)
inf
α
∃γ=γ(k)∀ρ∃K′∈[(]k),|(|K′)≥(1−δ)·k

k′ ⊆ K ′ ⇒

E
[
fA(k′) (

ρ
)] ≤ max



α · fO(k′) (

ρ
)
, ε ·

∑
ρ∈ρ

f (ρ)



 + γ.

Definition 3: An algorithm A is (ε, δ)-loosely α̃-
competitive, if for any k, except for a finite number of ks,
A is α̂ = α̂(ε, δ, k)-loosely competitive, for α̂ ≤ α̃.

In the above, our definition differs from that of [23], by
requiring an algorithm to be α̂(ε, δ, k)-loosely competitive
for almost all k.

Competitive paging algorithms have previously been
studied for the case of multi-level memory hierarchies. This
case differs from ours. In a memory hierarchy, the size an
object requiring being a constant; in our case modified ob-
jects require redundancy. In a memory hierarchy, the cost
is, in general, dominated by object retrieval; in our case,
modified objects incur an eviction cost, while unmodified
objects do not. This is aggravated by UEP. For the memory
hierarchy case, algorithms for uniform-size uniform-cost ob-
jects were studied [22], [21], [26], algorithms for uniform-
size arbitrary-cost objects were studied [25], [26], and al-
gorithms for arbitrary-size and differing-costs were studied
[29], [24], [23].

B. A Competitive Algorithm

In this subsection we describe M-Landlord, which is a
modification of an algorithm from [23]. The act of writing
modified data to a lower level is known as destage; the
act of deleting unmodified from a higher level is known

as demote. The algorithm works performing a continuing
series of destage and demote operations, based on a space-
per-cost object assessment. For brevity, we will refer in
equations to this algorithm as LLM.

The main result we prove is the following.
Theorem 1: Fix ε and δ, and let δ′  0 be an arbitrarily

small constant.
1. LLM is (ε, δ + δ′)-loosely 1−ln(ε)

δ e-competitive.
2. LLM has computational complexity O (1) for operations
which do not access the lower level, and computational
complexity O (log(k)), for operations which do.

The subsection is organized as follows. In Sub-subsection
II-B.1 we describe the algorithm. In Sub-subsection II-B.2
we study a related hierarchical-memory algorithm, in order
to analyze the LLM competitiveness. In Sub-subsection II-
B.3 we prove the loose-competitiveness and computational-
complexity properties of LLM.

B.1 M-Landlord

In this sub-subsection we describe the algorithm LLM.
This is a modification of the Landlord algorithm [23], ex-
tended to the case where some objects are modified, and
with lower computational complexity (at a cost to the gen-
erality of the original algorithm). Essentially, the algorithm
maintains a space-per-cost estimate of each object. Based
on this ratio, it decides on the next destage or demote op-
eration used for freeing space. Algorithms 1 and 2 show
the algorithm in pseudo-code.

The algorithm maintains the following global variable
and array:

LL = set of objects in L0, (7)
c = a real value describing “credit history”.

The algorithm maintains the following object-specific ar-
rays and heap-based PQ (priority queues) [30]. Let e ∈ LL
be a an object, then:

m = an array s.t. m(e) = T ⇔ e is modified, (8)
c = an array s.t. c(e) = object credit, ,

HR = a PQ s.t. m[e] = F ⇔ e ∈ Hr,

HW
i = a PQ s.t. m[e] = T

∧
µ (e) = i ⇔ e ∈ HW

i .

An object e is ordered within its PQ by c[e]. Initially, c = 0.

Algorithm 1 shows a high-level description of the algo-
rithm. Let ej be the object accessed at step j. If ej need
not be retrieved and is not newly modified, no state up-
dates need be done (lines 1 to 5). Space is allocated (by
calling Algorithm 2), and the object’s queue membership
is updated (lines 6 to 11). The object is retrieved if it is
not already in place (lines 12 to 20). A modification to
the object results in updating the internal data structures
(lines 21 to 26).
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In all cases, the object’s credit, c[ej ] is updated according
to the credit history c and the operation type tj . The ob-
ject’s cost-per-space is efficiently stored relative to objects
in its class, by means of the appropriate PQ.

The algorithm maintains the following invariants on ob-
jects’ credit,

Invariant 1:

∀e∈LL

(
c [e] ≤ fR

e

) ∨(
m [e] = T

∧
c [e] ≤ fW

e

)
, (9)

∀e∈LLc [e] ≥ 0,
and the following invariants on object PQs’ location,

Invariant 2:

∀e∈LL∀i∈[d]e ∈ HR ⇒ e /∈ HW
i , (10)

∀e∈LL∀i∈[d]e ∈ HW
i ⇒ e /∈ HR

∧
e /∈ Hw

j (j 6= i).

Algorithm 1 M-Landlord(ρ[j])

Handles a request ρ[j] =
(ej , tj).
1: /* Check if ρ[j] does not modify objects’ state.*/
2: if ej ∈ LL

∧
(tj = W ⇒ m [ej ] = T) then

3: Access ej

4: return
5: end if
6: /* Evict space needed */
7: M-Landlord-Evict(ρ[j])
8: /* Remove modified object from read PQ.*/
9: if ej ∈ LL

∧
tj = W then

10: PQ-Remove(HR, ej)
11: end if
12: /* Check if object should be retrieved.*/
13: if ej /∈ LL then
14: Retrieve ej

15: LL ← LL
·⋃ {ej}

16: if tj = R then

17: c [ej ] ← c +
fR

ej

|eR
j |

18: PQ-Insert(HR, ej)
19: end if
20: end if
21: /* Check if object must be marked as modified.*/
22: if tj = W then

23: c [ej ] ← c

(
1 + |eR

j |
|eW

j |
)

+
fW

ej

|eW
j |

24: m [ej ] ← T
25: PQ-Insert(HW

µ(ej)
, ej)

26: end if
27: Access ej

Algorithm 2 shows how space is cleared. First, the space
needed for eviction is calculated (lines 1 to 6). The algo-
rithm loops until at least that amount has been evicted
(lines 7 to 31). First, the credit history is updated (lines 9
to 16). By comparing an objects’ credit to the credit his-
tory, some objects are possibly demoted (lines 22 to 21),

and for each of the priorities, some are possibly destaged
(lines 22 to 30).

Algorithm 2 M-Landlord-Evict(ρ[j])

Clears space for a request ρ[j] =
(ej , tj).
Require: ej /∈ LL

∨
(tj = W

∧
m [ej ] = F)

1: /* s indicates the space which need be cleared.*/
2: s ← (tj = R)?

∣∣eR
j

∣∣ :
∣∣eW

j

∣∣
3: /* Check if modifying an unmodified existing object.*/
4: if tj = W

∧
ej ∈ LL

∧
m[eJ ] = F then

5: s ← s−
∣∣eR

j

∣∣
6: end if
7: /* Loop until enough space has been cleared.*/
8: while |LL| ≥ k − s do
9: /* δR, δW

1 , . . . , δW
d = credit-history changes.*/

10: δR ← c
[
PQ-Min(HR)

]− c
11: for i ∈ [d] do

12: δW [i] ← c[PQ-Min(HW
i )](

1+
|eR

i |
|eW

i |
) − c

13: end for
14: δ ← min

{
δR, δW [1], . . . , δW [d]

}
15: /* Update the credit history.*/
16: c ← c + δ
17: /* Demote some objects.*/
18: while c

[
e = PQ-Min(HR)

]
= c do

19: LL ← LL \ {e}
20: PQ-Remove(HR)
21: end while
22: /* Destage some objects.*/
23: for i ∈ [d] do

24: while c
[
e = PQ-Min(HW

i )
]

= c

(
1 + |eR|

|eW |

)
do

25: PQ-Remove(HW
i )

26: m [e] = F
27: c [e] ← c + feR

|eR|
28: PQ-Insert(HR, e)
29: end while
30: end for
31: end while

B.2 RW-Landlord

In this subsection we describe the algorithm RW-
Landlord, which we will use for the competitiveness anal-
ysis of M-Landlord. It is difficult to analyze M-Landlord
directly, because of the time-varying costs and sizes of ob-
jects. For brevity in mathematical expressions, we will in-
terchange RW-Landlord with LLRW .

RW-Landlord operates in a standard caching-problem
setting (i.e., without object modification). We relate the
setting of RW-Landlord to that of M-Landlord as follows.
For any object e in M-Landlord, we consider a read object
eR, and a write object eW . The retrieval cost of eR is feR ,
the retrieval cost of e; the retrieval cost of eW is feW , the
eviction cost of e. The size of eR is the size of e; the size
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of eW is the size of the redundancy of e. We conceptually
partition LL, the cache of LLRW , into sub-caches LLR and
LLW , containing read and write objects respectively. I.e.,

LL = LLR
·⋃

LLW , where

eR ∈ LL ⇒ eR ∈ LLR, (11)
eW ∈ LL ⇒ eW ∈ LLW .

When studying the competitiveness of RW-Landlord, we

similarly partition the cache of O to O = OR
·⋃

OW as
well.

We differentiate the setting from that of a classical
caching problem, by requiring the following invariants on
object containment:

Invariant 3:

∀eW eW ∈ LLW ⇒ eR ∈ LLR (12)
∀eW eW ∈ OW ⇒ eR ∈ OR,

and the requirement that servicing a write request entails
that both read object and write objects are in the cache,
i.e.,

Invariant 4:

ρ[j] = (ej ,W ) ⇒
(
eR
j ∈ LLR

∧
eW
j ∈ LLW

)
. (13)

Specifically, we must take care that the algorithm does
not evict a read object before the corresponding write ob-
ject, and that a read object is not evicted in order to make
place for its corresponding write object. The former would
be equivalent to evicting an object while retaining its re-
dundancy. The latter would be equivalent to evicting an
object in order to make place for its redundancy.

We will show that RW-Landlord has the corresponding
invariants to that of M-Landlord’s Invariant 1:

Invariant 5:

∀eR∈LLRc
[
eR

] ≤ feR , (14)

∀eW∈LLW c
[
eW

] ≤ feW ,

∀e∈LLc [e] ≥ 0

Algorithm 3 shows a high level description of the algo-
rithm. In structure, it is quite similar to that of Algorithm
1. There are some differences. Note that a request ρ[j]
is now explicitly to eR

j or to eW
j , instead of specifying an

object and an access type. The credit of each object is
maintained directly, instead of the use of the credit history
variable c in Algorithm 1. Access to objects is done via
Algorithm 4, to make explicit Invariance 4.

Algorithm 5 shows how space is cleared for a request.
First, the space needed for eviction is calculated (lines 1
to 6). The algorithm loops until at least that amount has
been evicted (lines 8 to 31), while maintaining Invariant 3.
In each iteration, credit is decreased from all objects (line
11). Objects whose credit is 0, are evicted (line 28).

To ensure that invariant 5 is maintained, credit trans-
ference is used. When clearing space for a write object,

Algorithm 3 RW-Landlord(ρ[j])

Handles a request ρ[j] = e
tj

j .
1: /* Check if ρ[j] does not modify objects’ state.*/
2: if eR

j ∈ LLR
∧ (

tj = W ⇒ eW
j ∈ LLW

)
then

3: RW-Landlord-Service-Request(ρ[j])
4: return
5: end if
6: /* Evict space needed */
7: RW-Landlord-Evict(ρ[j])
8: /* Check if read object must be retrieved.*/
9: if eR

j /∈ LLR then
10: Retrieve eR

j

11: LLR ← LLR
·⋃ {

eR
j

}

12: c
[
eR
j

] ← feR
j

13: end if
14: /* Check if write object must be retrieved.*/
15: if tj = W then
16: Retrieve eW

j

17: LLW ← LLW
·⋃ {

eW
j

}

18: c
[
eR
j

] ← feR
j

19: c
[
eW
j

] ← feW
j

20: end if
21: RW-Landlord-Service-Request(ρ[j])

Algorithm 4 RW-Landlord-Service-Request(ρ[j])

Handles an existing-object request ρ[j] =
e
tj

j .

Require: eR
j ∈ LLR

∧ (
tj = W ⇒ eW

j ∈ LLW
)

1: /* For reads, access and update a single object.*/
2: if (tj = R) then
3: access eR

j

4: /* For write, access and update two objects.*/
5: else
6: access eR

j and eW
j

7: end if

the credit of the corresponding read object is raised to the
maximum (line 14). In addition, all write objects transfer
credit to their read objects (lines 16 to 23).

We now analyze the competitiveness of the algorithm.

Theorem 2: LLRW is k
h−k+1 competitive.

To analyze LLRW , we use a potential function from [23].
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Algorithm 5 RW-Landlord-Evict(ρ[j])

Clears space for a request ρ[j] =
e
tj

j .

Require: eR
j /∈ LLR

∨ (
tj = W

∧
eW
j /∈ LLW

)
1: /* s indicates the space which need be cleared.*/
2: s ← (tj = R)?

∣∣eR
j

∣∣ :
∣∣eW

j

∣∣
3: if tj = W

∧
eR
j /∈ LLR then

4: /* Increment s if a read object is needed.*/
5: s ← s +

∣∣eR
j

∣∣
6: end if
7: /* Evict space while maintaining Invariant 3.*/
8: while |LL| ≥ k − s do

9: δ ← min
{

mineR∈LLR

c[eR]
|eR| ,mineW∈LLW

c[eW ]
|eR|+|eW |

}

10: for e ∈ LL do
11: c [e] ← c [e]− δ |e|
12: if tj = W

∧
eR
j ∈ LLR then

13: /* Update corresponding read-object, if in
cache.*/

14: c
[
eR
j

] ← feR
j

15: end if
16: for eR ∈ LLR do
17: if eW ∈ LLW then
18: /* Transfer credit from write objects to read

objects.*/
19: δ′ ← min

{
δ
∣∣eR

∣∣ , δ
∣∣eW

∣∣}
20: c

[
eR

] ← c
[
eR

]
+ δ′

21: c
[
eW

] ← c
[
eW

]− δ′

22: end if
23: end for
24: end for
25: for e ∈ LL do
26: if c [e] = 0 then
27: /* Evict objects with 0 credit.*/
28: LL ← LL \ {e}
29: end if
30: end for
31: end while

Definition 4: Define the potential function

Φ = (15)
(h− 1)

∑

e′R∈LLR

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ LLW

c
[
e′R

]
, e′W /∈ LLW +

k
∑

e′R∈OR

{
fe′R + fe′W , e′W ∈ OW

fe′R , e′W /∈ OW −

k
∑

e′R∈OR

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ OW

c
[
e′R

]
, e′W /∈ OW

The following lemma proves Theorem 2.
Lemma 1: Following any series of actions by LLRW and

O, Φ ≥ 0. The following four operations affect Φ:
• O retrieves eR: Φ increases by at most kfeR .

• O retrieves eW : Φ increases by at most kfeW .
• LLRW retrieves eR: Φ decreases by at least (k−h+1)feR .
• LLRW retrieves eW : Φ decreases by at least (k − h +
1)feW .
No other action by O or LLRW increases Φ.

The proof of Lemma 1 is similar in many points to that
in [23]. We focus mainly on the points in which it differs
due to Invariants 3, 4, and 5.

Proof: We analyze the effect of the steps taken by O
and LLRW on Φ.
• O evicts e ∈ O: Since Invariant 5 is maintained (see
Algorithm 3), Φ cannot increase.
• O retrieves e ∈ O: In this case O pays fe. Since Invariant
5 (∀e∈LLc [e] ≥ 0) is maintained (see Algorithm 3), then Φ
increases by at most kfe.
• LLRW transfers credit from c

[
eW

]
to c

[
eR

]
(lines 21 and

20): In this case eR
j ∈ LLR and eW

j ∈ LLW . Rewriting Φ,
we have

Φ = (16)
(h− 1)

(
c
[
eR

]
+ c

[
eW

])
+

(h− 1)
∑

e′R∈LLR\{eR}

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ LLW

c
[
e′R

]
, e′W /∈ LLW +

k



feR + feW − (
c
[
eR

]
+ c

[
eW

])
, eW ∈ OW

feR − c
[
eR

]
,

eR ∈ OR

eW /∈ OW

0 , eR /∈ OR

+

k
∑

e′R∈OR\{eR}

{
fe′R + fe′W , e′W ∈ OW

fe′R , e′W /∈ OW −

k
∑

e′R∈OR\{eR}

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ OW

c
[
e′R

]
, e′W /∈ OW ,

which shows that Φ cannot increase.
• LLRW increments c

[
eR

]
to feR (line 14): We can assume

in this case that eR ∈ OR, and therefore the increase to Φ
is (feR − c

[
eR

]
)(h− 1− k) ≤ 0.

• LLRW decreases uniformly c [e′] for all e′ ∈ LL (line
11): This occurs in one of three cases: either there is an
eR ∈ OR \ LLR, or there is an eW ∈ OW \ LLW , or both
of the previous. We prove the first case (which is the only
case in [23]). The other two cases are similar. Letting
O′R = OR

⋂
LLR, and, O′W = OW

⋂
LLW we have

Φ
(a)
= (17)

(h− 1)
∑

e′R∈LLR

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ LLW

c
[
e′R

]
, e′W /∈ LLW +

k
∑

e′R∈OR

{
fe′R + fe′W , e′W ∈ OW

fe′R , e′W /∈ OW −

k
∑

e′R∈O′R

{
c
[
e′R

]
+ c

[
e′W

]
, e′W ∈ O′W

c
[
e′R

]
, e′W /∈ O′W

.

(where (a) follows from the fact that for e′ /∈ LL, c [e′] = 0.
Since eR ∈ O \ LL, |O ⋂

LL| ≤ h−
∣∣eR

∣∣. Since there is no
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room for eR in LL, |LL| ≥ k− ∣∣eR
∣∣ + 1. It follows that the

decrease to Φ is at least (h−1)(k−∣∣eR
∣∣+1)−k(h−∣∣eR

∣∣) =
(1−

∣∣eR
∣∣)(h− 1− k) ≥ 0.

• LLRW evicts an object e (line 28): Since this happens
when c [e] = 0 (line 26), Φ does not change.
• LLRW retrieves eR (line 11) and sets its credit to c

[
eR

]
(line 12): In this case, LLRW pays a cost of feR . Since
the retrieval is done in response to a request for eR or eW ,
we can assume that eR

j ∈ OR. The increment to the credit
therefore increments Φ by (h − 1 + k)fe, or equivalently,
decrease it by (k − h + 1)fe.
• LLRW retrieves eW (line 17) and sets its credit to c

[
eW

]
(line 19): This is similar to the previous case.

B.3 Loose Competitiveness of M-Landlord

The following lemma shows that LLM and LLRW work
similarly.

Lemma 2: Assume at the starting point LLM is operat-
ing on an empty level, and LLRW is operating on an empty
cache. Let ρM and ρRW be request sequences to LLM and
LLRW , respectively, s.t. at any request j ∈ [M ],

ρM[j] = (ej , tj) ⇔ ρRW [j] = e
tj

j (18)

Then following the request,
• LLM contains an unmodified object e↔LLRW contains
eR and does not contain eW .
• LLM contains a modified object e ⇔ LLRW contains
both eR and eW .
• LLM does not contain an object e ⇔ LLRW contains
neither eR nor eW .

Proof: We first show the relation between credit vari-
ables maintained by the algorithms LLM and LLRW .

If LL contains modified ej , then

c
[
eW
j

]
=

(
c [ej ]− c

(
1 +

∣∣eR
j

∣∣
∣∣eW

j

∣∣

))
∣∣eW

j

∣∣ (19)

and

c
[
eR
j

]
= feR

j
. (20)

If LL contains unmodified ej , then

c
[
eR
j

]
= (c [ej ]− c)

∣∣eR
j

∣∣ . (21)

and there is no eW
j object.

In other words, the actual credit of an element is given
by (19) if it is modified and by (21) if it is unmodified.

if ej is modified then (20) clearly holds, since its read and
write objects exist, and hence whenever c

[
eR
j

]
is decreased

in line 11 of Algorithm RW-Landlord-Evict, it is increased
back to the initial value in lines 16-21.

Initially (when an element is inserted to priority queues
in Algorithm LLM) (19) and (21) are clearly true (see lines
18 and 25 in Algorithm M-Landlord and line 28 in Algo-
rithm M-Landlord-Evict).

The value of element’s credit is effectively decreased in
line 16 in Algorithm M-Landlord-Evict (by increasing the
counter). If ej is unmodified, the credit of eR

j is decreased
by δ

∣∣eR
j

∣∣ in line 11 in Algorithm RW-Landlord-Evict, while
c is decreased by δ in line 16 in Algorithm M-Landlord-
Evict. Hence, Equation 21 still holds. If ej is modified,
the credit of eW

j is decreased by δ
∣∣eW

j

∣∣ in line 11 and ad-
ditionally by δ

∣∣eR
j

∣∣ in line 21 in Algorithm RW-Landlord-
Evict, while c is increased by δ in line 16 in Algorithm
M-Landlord-Evict. Hence, Equation 19 still holds.

Finally, we note that by Equation 21, condition for re-
moval of ej from LL in line 20 in M-Landlord-Evict corre-
sponds to a condition feR = 0 in line 26 in RW–Landlord-
Evict. Similarly, by Equation 19, condition for marking ej

as unmodified in line 26 in M-Landlord-Evict corresponds
to a condition feW = 0 (for removal of write object) in line
26 in RW–Landlord-Evict.

By Theorem 2, LLRW is k
k−h+1 competitive. We show

that this implies the competitiveness of LLM as well.
Theorem 3: LLM is k

k−h+1 competitive.
Proof: Let

γ′(h, k) = max
eW

feW

h

|eW | . (22)

We then have

fLL
M(k)

(
ρM

) (a)

≤ (23)

fLL
RW(k)

(
ρRW

) (b)

≤
k

k − h + 1
fO

RW(h)
(
ρRW

) (c)

≤
k

k − h + 1
fO

M(h)
(
ρM

)
+

k

k − h + 1
γ′(h, k)

where in the above, (a) follows from the fact that LLM
“simulates” the actions of LLRW , and so its cost is not
higher than that of LLRW , (b) follows from Theorem 2,
and (c) follows from the fact that if an algorithm O′RW for
the cache problem would “simulate” the actions of OM,
then

fO
′RW(k)

(
ρRW

) ≤ fO
M(h)

(
ρM

)
+ γ′(h, k), (24)

since for each write object retrieved, OM might decide not
to flush it to the lower level, but the number of objects for
which this is true is bounded by a function of h, and not
of ρ.

From (23) we have that LLRW is competitive according
to Definition 1, with

α(h, k) =
k

k − h + 1
, (25)

γ(h, k) =
k

k − h + 1
γ′(h, k).
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The following proof of claim 1 in Theorem 1 follows [23],
but differ in the definitions of loose competitive, and of the
accompanying constants.

Lemma 3: LLM is (ε, δ)-loosely (1−ln(ε))e
δ -competitive.

Proof: For fixed ε, δ, and k, let b  0 be a constant,
and define

η = η(b, k, ε, δ) =
k

b
ε−

b
δk−b , (26)

For a fixed ρ, let B be a set of s bad values consisting of
any j for which

fLL
M(j)

(
ρ
) ≥ max

{
α · fO(j)

(
ρ
)
, ε

M∑

i=1

fρ[i]

}
+ γ(j). (27)

Specifically, let B = {k1, . . . , ks}. W.l.o.g., let k1 ≤ · · · ≤
ks ≤ k. Define the subset B′ = {k′1, . . . , k′s′} ⊆ B, by k′i =

kdibe, for i ∈
[⌈

s
dbe

⌉]
. Note that for i ∈ [s′], k′i − k′i−1 ≥ b,

and that s′ ≥ s
b+1 − 1. We then have

fLL
M(k′i)

(
ρ
) (a)

≤ (28)

k′i
k′i − k′i−1 + 1

fO(k′i−1)
(
ρ
) (b)

≤

k′i
η(k′i − k′i−1 + 1)

·
(
fLL

M(k′i−1)
(
ρ
)− γ(k′i − k′i−1 + 1, k′i−1)

) (c)

≤
ε

b
δk−b fLL

M(k′i−1)
(
ρ
)
,

where, in the above, (a) follows from Theorem 3, (b) follows
from the fact that k′i−1 is bad and (27), and (c) follows from

the fact that k′i
η(k′i−k′i−1+1) ≤ k

ηb and (26).

Inductively,

fLL
M(k′

s′ )
(
ρ
) ≤

(
ε

b
δk−b

)s′

· fLLM(k′0)
(
ρ
)
. (29)

We also have

ε · fLLM(k′0)
(
ρ
) (a)

≤ ε ·
M∑

i=1

fρ[i]

(b)

≤< fLL
M(k′

s′ )
(
ρ
)
, (30)

where (a) follows from the fact that the cost of an algorithm
cannot be larger than the sequence request, and (b) follows
from (27).

It follows from (29) and (30) that ε ≤
(
ε

b
δk−b

)s′

, from

which it follows that s′ ≤ δk−b
b , and therefore

s ≤ δ
b + 1

b
k. (31)

From the definition of the set B, and (31), we have that
LLM is (ε, δ b+1

b , k)-loosely k
b ε−

b
δk−b -competitive, for b  0.

For any k, setting b = δk
1−ln(ε) in (26), yields η = 1−ln(ε)

δ e.
For all but a finite number of k,

δ
b + 1

b
= δ

(
1 +

1
δk

1−ln(ε)

)
≤ δ + δ′. (32)

C. Comparison to Some Common Solutions

Present systems commonly employ two types of solutions
for the eviction problem in Subsection II-A. In the first,
maximal protection, all data is protected to the maximal
requirement. In the second, static partitioning devices, or
devices’ blocks, are statically partitioned s.t. each partition
element is dedicated to elements of a single priority. In both
cases, an eviction policy for uniform priority is used (either
according to the highest priority, or within each partition
element). It is clear that these solutions are not efficient
in terms of storage efficiency (in particular the first one).
We show in this subsection that, in addition, they are not
competitive in any definition in Subsection II-A.

Theorem 4: Let d be a number of priorities. Let Am be
any eviction algorithm based on maximal protection (while
the ratio between the highest priority space consumption
per one element to the lowest priority one is νd

ν1
) , and As be

any eviction algorithm based on static partitioning, where
either or both of Am and As can be random algorithms.
1. For any h, k s.t. h  k

d , αAs,h,k = ∞.
2. For any δ > 1

d , ε < 1− 1
dδ and k, α̂(As, ε, δ, k) = ∞.

3. For any h, k s.t. h  k
νd
ν1

, αAm,h,k = ∞.

4. For any δ > 1
d , ε < 1− 1

δ
νd
ν1

and k, α̂(Am, ε, δ, k) = ∞.

We first prove claim 1 in Theorem 4.
Proof: Let E =

{
e1, . . . , e k

d +1

}
be arbitrary elements

of priority j. Consider the request sequence ρ = ρ1, . . . , ρM

s.t. ρi = (ei mod ( k
d +1), R). Clearly, the cost of the op-

timal algorithm on the request sequence is fO(h)
(
ρ
)

=∑
i∈{ k

d +1} fei . Dividing the request series into rounds,

each of size k
d , it is easy to see that in each round, As

incurs a cost of at least mini∈[ k
d +1] fei . Clearly,

fAs(k)
(
ρ
)

fO(h)
(
ρ
) ≥

∑ M
k
d

+1

j=0 mini∈[ k
d +1] fei∑

i∈{ k
d +1} fei

M→∞−→ ∞. (33)

The proof now follows by Yao’s Minimax principle [27].
The proof of claim 3 in Theorem 4 is similar.

We now prove claim 2 in Theorem 4.
Proof: Let γ ∈ (1, d) be a real number. Let Adet

s be
the best online paging deterministic algorithm, which uses
static partitioning. Clearly, for each cache size k′ ≤ k there
is some j such that Algorithm Adet

s allocates for priority j
at most k

d space.

Set E =
{

e1, . . . , eγ k
d

}
be arbitrary elements of priority j

(having cost fe each one). The read sequence ρ of length M
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is chosen in the following way: ρ[i] is chosen uniformly from
all the items of E. Then for cache sizes k′ s.t. γ k

d ≤ k′ ≤ k
we have

E
[
fA

det
s (k′) (

ρ
)] ≥ M

γ − 1
γ

fe, (34)

M∑

i=1

fρ[i] ≤ Mfe, (35)

fO(k′) (
ρ
) ≤ γ

k

d
fe. (36)

Note that (36) holds if k′ ≥ γ k
d . Hence,

E
[
fA

det
s (k′)

(
ρ
)]

fO(k′)
(
ρ
) ≥

M γ−1
γ

γ k
d

M→∞−→ ∞ (37)

for all γ k
d ≤ k′ ≤ k.

E
[
fA

det
s (k′)

(
ρ
)]

∑M
i=1 fρ[i]

≥ γ − 1
γ

= ε. (38)

Hence, for ε < γ−1
γ and δ > γ

d , the algorithm Adet
s is not

(ε, δ, k) loosely-competitive. In other words, the algorithm
Adet

s is not (ε, δ, k) loosely-competitive for δ > 1
d and ε <

1 − 1
dδ . By theorem ??, the algorithm As is not loosely-

competitive too.
The proof of claim 4 in Theorem 4 is similar.

III. The Necessity of Hierarchical Reliability

In this section we deal with bounds on storage-system
reliability as the devices’ capacity grows. These bounds are
absolute limits, in the sense that they cannot be exceeded
by any choice of codes, disk-replacement policy, or data-
migration policy. The results in this section justify the
necessity of a hierarchical reliability system. For brevity,
we omit much of the details of the proofs.

We consider a system S composed of n storage devices.
Each device is composed of c blocks containing b consecu-
tive bits, and has a read/write bandwidth of r blocks per
time unit. We model the devices’ failure laws as being
distributed i.i.d. exponentially with mean 1

λ [1]. The fail-
ure of a device corresponds to the erasure of all data on
it. devices have i.i.d. (independently and identically dis-
tributed) entire-device failure laws. A block erasure is a
detected corrupted block, and occurs with probability PE .
A block substitution is an undetected corrupt block, and
occurs with probability PS . If a block is substituted, we
assume each bit has been flipped with probability Ps. E.g.,
Ps = 1

2 corresponds to a random earlier version of block
contents. The bounds in this section hold even for cases in
which PE = PS = 0.

The amount of user data stored in the entire system is
cus. The MTTF (mean time to failure) of a component C

is the mean of tfC . The MTTDL (mean time to data loss)
of a component C is the mean time until the failure of a

component in C will cause data within it to be irreversibly
lost. The system MTTDL is the MTTDL of S, the entire
system. W.l.o.g., we consider a uniform error-protection re-
quirement. Let ν be the ratio between the system MTTDL
and the time to sequentially read a single device. We con-
sider systems in which the system MTTDL (equivalently
ν) can be made arbitrarily high as cus and |S| grow large.
The storage rate of the system is ρ = cus

|S|·c ≤ 1 (some of the
related work term this the storage efficiency). The max-
imal amount of data which can be stored with such ν is
cR
max (S) = cR

max (S, ν).

The main idea of the proof is as follows. We will first
show that the maximal amount of data which can be stored
in the system, cR

max (S), is determined by the effective vol-
ume of the system and by the block capacity of each of
its blocks. Using this, we will show in two ways that
an increase in the amount of user data, cus, must result
in an increase in the amount of devices, n: the effective
volume of the system does not increase beyond a certain
point of increase in c, and the average amount of recovery-
related operations grows at least linearly with c. For per-
formance reasons, the blocks in a storage system are usually
not coded en-mass in a single coding group. Rather, the
blocks are partitioned into smaller groups, and the blocks
of each group are protected by some code (e.g., in a mir-
roring scheme, the blocks are partitioned into groups of
size 2). We will show that an increase in n must entail
an increase in the average redundancy of each group. This
can be shown to lead to an increase in the amount of blocks
that need be accessed when a data-block is written or mod-
ified.

We first define the effective volume and block capacity,
and show how they limit the effective amount of user data
which can be reliably stored in the system.

Definition 5: (Effective Volume and Block Capacity)
The effective volume is defined as

ĉ (S) = (39)

r max
c1,...,cn

{
n∑

i=1

ci | ∃C1,...,CnP

(
n∧

i=1

tfCi
≥ ci

)
≥ 1

ν

}
.

The block capacity is defined as

b̂ (S) = (40)
b (1− PE) + H (PE) + PE log (PE) +

b∑

i=1

((
2b

i

)
(1− PE)PSP i

s (1− Ps)
b−i ·

log
((

2b

i

)
(1− PE)PSP i

s (1− Ps)
b−i

))
+

(1− PE)
(
PS (1− Ps)

b + (1− PS)
)
·

log
(
(1− PE)

(
PS (1− Ps)

b + (1− PS)
))

.

Theorem 5: For any system S,

cR
max (S) ≤ ĉ (S) b̂ (S) . (41)
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To prove Theorem 5, consider epochs, each taking c
r time,

and divided into steps of duration 1
r . We consider an epoch

starting at time 1. We define the following sets of devices:

X = set of system devices at time 1, (42)

Y = set of replacement devices inserted by time
c

r
.

We also define the following sets of blocks:

X(i) = set of distinct X blocks read at time i, (43)

X̂(i) = set of distinct X blocks written at time i,

Y (i) = set of distinct Y blocks written at time i,

Xus = set of user data at time 1,

Xr = set of recovered data at time
c

r
.

For any k′ and k′′, we define the sets

〈X(i)〉k′′i=k′ = (44)
{X(i) | i = k′, k′ + 1, . . . , k′′} ,

〈
X(i), X̂(i), Y (i)

〉k′′

i=k′
=

{
X(i), X̂(i), Y (i) | i = k′, k′ + 1, . . . , k′′

}
.

By manipulating the definition of conditional entropy,
and using the data-processing inequality [31], it is easy to
show that the information pertinent for recovery written
at step j, is contained in the information read and written
up to j, and the information read in j. I.e., for any1 j

H

(
Xus| 〈X(i)〉

c
r

i= c
r−j ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−1

i=1

)
= (45)

H

(
Xus| 〈X(i)〉

c
r

i= c
r−j−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−2

i=1

)
.

Let H (·|·, c′S) to denote the conditional entropy when a
total of c′S distinct blocks were read from X during the
epoch. Then for any c′S ,

H (Xus|Xr, c
′
S) (46)

(a)

≤ H

(
Xus|

〈
X(i), X̂(i), Y (i)

〉 c
r

i=1
, c′S

)

(b)
= H

(
Xus|X(

c

r
),

〈
X(i), X̂(i), Y (i)

〉 c
r−1

i=1
, c′S

)

(c)
= H

(
Xus| 〈X(i)〉

c
r

i= c
r−1 ,

〈
X(i), X̂(i), Y (i)

〉 c
r−2

i=1
, c′S

)

...
(d)
= H

(
Xus| 〈X(i)〉

c
r

i= c
r−j ,

〈
X(i), X̂(i), Y (i)

〉 c
r−j−1

i=1
, c′S

)

...

(e)
= H


Xus|

c
r⋃

i=1

X(i), c′S




(f)

≤ c′sb̂ (S) .

1We use H(·) to denote the binary-entropy function

In the above, inequality (a) follows from the fact that

Xus →
〈
X(i), X̂(i), Y (i)

〉 c
r

i=1
→ Xr is a Markov chain, and

so the data processing inequality applies, and (b) through
(e) follow from further manipulating the conditional en-
tropies and applying (45). Inequality (f) follows from Shan-
non’s channel-capacity theorem. A user sending c′s consec-
utive blocks over a communication channel suffering from
the given block-erasure and block-substitution probabili-
ties, can send only c′sb̂ (S) information. Now, if c′S  ĉS ,
then with probability 1

ν , data is lost. It follows that the
expected number of epochs until data loss is ν.

The proof of Theorem 5 gives the following interpreta-
tion. The effective volume of the system in an epoch, is
determined by the number of blocks, which it is “reason-
able to assume” will be encountered when all the system
devices are scanned in parallel. To achieve the system ca-
pacity, each block read should effectively contain user data.
For the system to remain reliable, this should be the case
for the next epoch as well. It follows that 〈Y (i)〉k′′i=k′ is the
only set of blocks which need be written during an epoch.
To achieve capacity, all realistic shapes with the given area
should suffice to recover the user data. For a large number
of devices, this is not difficult. We return to this point in
Subsection ??.

Assume that each device capacity, c, grows very large,
while r remains relatively the same. Using the idea of ef-
fective volume, it is easy to show the limit of the effect on
the total amount of data which can be stored reliably. It
follows that for scalable systems, a large n must be consid-
ered.

Theorem 6: for a system S with n devices, the effective
capacity is bounded by

cR
max (S) ≤ (47)

2nr


1−

(
1
2

) c
r

ln(2)
λ


 (1 + o(1))b̂ (S)

c→∞−→ 2nrb̂ (S) (1 + o(1)).

By the properties of the exponential distribution,

RC

(
t +

ln(2)
λ

| t
)
≤ 1

2
. (48)

By the law of large number, with probability one,

∣∣∣∣
{

C ∈ S | tC ≥ i
ln(2)

λ

}∣∣∣∣ ≤ (49)

1
2i−1

n(1 + o(1)),
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and so, with probability one,

〈X(i)〉
c
r
i=1 ≤ (50)

r

c
r

ln(2)
λ∑

i=0

∣∣∣∣
{

C ∈ S | tC ≥ i
ln(2)

λ

}∣∣∣∣

2nr


1−

(
1
2

) c
r

ln(2)
λ


 (1 + o(1)).

The above idea closely resembles the analysis of the skip-
list data structure [32]. Although this data structure can
theoretically have an infinite amount of elements in its lev-
els (corresponding here to an infinite c), the total number
of levels is bounded, with high probability, by the num-
ber of items in its lowest level (corresponding here to the
bounded effective volume).

The same result can be shown by considering the aver-
age number of recovery operations. For a fixed number of
devices, an increase in c causes an increase in recovery ac-
tivity. When the average recovery activity is higher than
afforded by the devices, data is lost.

Theorem 7: Let the n devices contain ρnc blocks of user
data. The average number of recovery IOs per storage de-
vice per time unit is at least

ρc(1− o(1)). (51)

Fix ρ′ � ρ. Let t′ = (1−ρ′)·n
λ . By the Poisson approx-

imation, at time t′, the number of original devices which
have not failed is ρ′n(1 + o(1)). As shown in Theorem 5,
the effective volume of the original devices at t′ is only

〈X(i)〉t
′+1+ c

r

i=t′ ≤ ρ′nc(1 + o(1)). (52)

It follows that up to time t′, the average number of recovery
IOs per original storage device per time unit is at least

(ρ− ρ′)cn(1− o(1))
n

ρ′→0−→ ρc(1− o(1)). (53)

The two previous points show that as cus grows large
enough, so must n. For performance reasons, the blocks in
a large storage system are usually not coded en-mass in a
single coding group. Rather, the blocks are partitioned into
smaller groups, and the blocks of each group are protected
by some code (e.g., in a mirroring scheme, the blocks are
partitioned into groups of size 2). We now show that as
n increases, so must the average redundancy in the coding
groups.

Theorem 8: Let S be a system in which the data is pro-
tected in the following manner. The data is divided into
(at most cn

k ) groups, each of size k and resiliency k′. Let
the fraction of blocks used in S be β. Assume the failure
of a device is detected after td time units. Then the system

MTTDL is bounded by

td


1 +

1

1− p

βn− k
c−1

k(k−1)
r


 n→∞−→ td, (54)

where

pr = 1−
k′∑

i=0

(
k

i

) (
1− e−λtd

)i (
e−λtd

)k−i
. (55)

The proof follows by considering a system S′ of devices,
composed of disjoint sub-groups, each of size k and re-
siliency k′. The time to data loss in S′ is a Bernoulli pro-
cess, parameterized by the number of sub-groups. It is pos-
sible to show that any system using coding groups of size k
and resiliency k′, inherently contains a subsystem similar
to S′. The manner in which data groups are laid out, can
at most minimize the number of disjoint sub-groups which
need be considered, but cannot eradicate them altogether.

It was observed in [33] that groups with resiliency k′ re-
quire k′ updates per write; if this were not the case, a write,
followed by the k′′ � k′ updates, would be susceptible to
k′′+1 failures. Combining this with Theorem 8, we obtain
the following.

Theorem 9: For any fixed k′, ρ and large enough n, the
number of IO updates per modification is larger than k′.

Consider any coding scheme which is used for all data
in the system. The above points show that as cus grows
large, the performance viewed by users must degrade. This
can be avoided by presenting the users with a relatively-
small group of devices containing their active data, and
using high-performance (and therefore high redundancy)
codes to protect these data. Since active data changes with
time, the rest of the system must also display reasonable
performance. This leads to the necessity of hierarchical
reliability.

IV. Conclusions and Future Work
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