
H-0214 December 14, 2003
Computer Science

IBM Research Report

Object Store Based SAN File Systems

J. Satran, A. Teperman
IBM Research Division

Haifa Research Laboratory
Haifa 31905, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Object Store Based SAN File Systems

J. Satran A. Teperman
Julian_Satran@il.ibm.com teperman@il.ibm.com

IBM Labs, Haifa University, Mount Carmel, Haifa 31905, Israel

Abstract
SAN file systems today allow clients direct access to block
devices for data storage and retrieval without going
through a server. This however poses new challenges to file
system designers such as security, scalability and manage-
ment. The newly developed Object Stores (ObS) [5] [6] [9]
enable applications to create and delete objects and to
write and read byte ranges to/from objects. ObS provide
space management abstraction, late binding, security, safe
writes and other capabilities. Building a SAN file system
using ObS as storage devices alleviates the challenges
mentioned above. In this article we briefly detail these
challenges and describe how ObS help in solving them. We
then describe zFS, a scalable distributed file system which
uses ObS.

1 Introduction
The advent of high speed networks enables hooking up
many storage devices and many computers together in what
is called a Storage Area Network (SAN). In such an envi-
ronment clients interact directly with the storage devices
for data storage and retrieval without going through a
server. This direct interaction and the high speed network
enables building a high performance distributed file sys-
tem; thus such systems are also referred to as SAN file sys-
tems. For such a system to work properly, a coordinating
agent in required to coordinate clients' access to the shared
data. This agent is usually called the Meta Data Server.
In the past where SANs were being used in private Fibre
Channel networks to emulate direct attached storage (i.e.,
no sharing), there was no real problem of security, scalabil-
ity and management. The reason is that the file system was
private thus the clients were trusted, and the file system
itself was relatively small, so scalability and management
were not a big problem. Once SANs started to be used as
enterprise and Wide Area Network (WAN) file system al-
lowing all clients direct access to the storage devices with-
out server mediation, these issues became acute.
Since clients can directly access storage devices to store
and retrieve data, special care must be taken to provide
security, so that one client will not accidentally corrupt the
data of another or read its data. Furthermore, storage allo-
cation is a problem; in case a client needs more space not
available on the disk, how and who is responsible for allo-
cating more space on another storage device. End-to-end

management at a meaningful semantic level is also a prob-
lem.
The newly introduced Object Stores [5] [6] [9] are devel-
oped to address these issues. Building a SAN file system
using object stores as storage devices overcomes these
problems and provides us with a scalable secure distributed
file system which is comparatively easy to manage.
In the next section we describe the components of a SAN
file system. Section 3 describes the relevant characteristics
of ObS followed by section 4 which describes how object
stores can be used to build SAN file systems free of the
problems mentioned earlier. A description of zFS, a scal-
able distributed file system using object stores, follows in
section 5. Section 6 describes two file systems which use
Object Stores followed by summary remarks in section 7.

2 SAN File System Components
Figure 1 shows a typical configuration of SAN file system
 [1]. The configuration consists of a set of hosts (also re-
ferred to as nodes), a set of storage devices and networks
that interconnect them. The configuration consists of the
following components:
• A set of hosts/clients which read or generate data on

the file system. These can be heterogeneous hosts
running different operating systems.

• A cluster of Meta Data Servers to coordinate clients'
access to the file system. There must be at least one
metadata server, but for high availability several
should be setup.

• A set of storage devices. These devices can be block
devices, or a more elaborated storage sub-system
which provides RAID virtualization over physical
disks. In the remainder of the article we use the term
Logical Unit (LU) to refer to such storage volumes.

• A network which connects the clients, metadata
server and the block devices. This can be either Fibre
Channel, iSCSI or IP network.

• One or more administrative consoles that control the
metadata servers.

• An IP network connecting the administrative console
to clients and metadata servers. Note that the two net-
works can be merged into one.

 2

Although SAN file system is a distributed file system, it
provides applications with a single system image of the file
system. In other words, data consistency for applications

running on different nodes and accessing the same file is
the same as all applications running on a single node ac-
cessing the same file on a local file system.

3 Object Storage
As mentioned before, SAN filesystems promise to improve
storage access performance by providing non-mediated,
shared access to storage. In a SAN Filesystem the data and
control paths are separated. But the use of Block Storage
in SAN's raises several issues.
The most significant issue raised is probably security on a
SAN. This issue exists even on closed networks but it will
be exacerbated by the expected adoption of IP-based stor-
age.
In discussing SAN security we find it useful to distinguish
between two concepts: security and protection.

Protection is always needed when there is shared access to
data. It is intended to address buggy clients, administrative
errors, etc. One example of why protection is needed is that

if an administrator incorrectly configures Logical Unit
Number (LUN) masking1, a Windows NT client that dis-
covers a Logical Unit (LU) will assume it owns the LU,
writing a signature on the LU, thereby causing a data integ-
rity problem. Protection, as a defense against errors is thus
needed even if we have a completely secured and trusted
infrastructure.
Security goes beyond protection in that it addresses inten-
tional attempts at unauthorized access. Security is thus es-
sential if the infrastructure, (e.g., storage network), is un-
trusted.
Today, only minimal and very coarse grain support for
security in a storage area network environment exists. In

1 Masking is a common way of protecting whole disk units by

making them invisible to clients.

 Figure 1. SAN File System Components

 3

general, one must assume that the storage clients are trusted
and the mechanisms that do exist such as zoning, LUN
masking, etc., are hard to use and related to the physical
structure of the storage. Thus, at best it is possible to pro-
vide all or nothing access to a LU for a given host.
Doing significantly better than this very coarse level of
access control in the context of today's block storage de-
vices, is probably not practical. There are too many ac-
tively used blocks to provide block-level security and ex-
tent-level security as proposed in [2] is foreign to the way
higher level software (in this case file systems) are organ-
ized to provide access control.
For block-level security the storage unit cannot effectively
take part in enforcing security decisions since it does not
know which blocks need to have the same security attrib-
utes, i.e., the storage unit does not know which blocks are
related. It would, thus, be necessary to tell the storage unit
who is allowed to access each block which clearly would
not make sense from the perspective of performance. For
extent-level security the coordination required between a
managing entity, client and the storage controller would be
extensive.
It is for this reason that most of the research on object stor-
age has been driven by the need to provide SAN security
 [3].
A second issue that arises when trying to fully leverage a
SAN is scalability. Scalability is not an issue unless hosts
share access to volumes. However, shared access is one of
the touted benefits of a SAN filesystem. Shared access re-
quires coordination, and coordination can lead to scalabil-
ity problems. For example, file systems must coordinate
allocation of blocks to files and for shared read-write ac-
cess clients must coordinate usage of data blocks with other
clients.
In SAN file systems built upon block storage, space alloca-
tion is managed by the metadata server, typically in concert
with smart client involvement. By having the metadata
server run on a cluster and partitioning responsibility be-
tween the nodes of the cluster, a good degree of scalability
can be achieved. However, there are limits. This coordina-
tion can incur several costs including false contention be-
tween clients allocating space from different logical units
and additional communication. In addition, since a meta-
data server runs on a traditional computer platform, i.e.,
one without a non-volatile RAM, there is either additional
overhead to harden metadata updates, or a risk of (meta)
data loss; since storage control units (typically) have some
form of non-volatile RAM (e.g., to support fast writes) this
support can be leveraged to harden metadata if the control
unit was to perform space allocation.
Unlike a traditional block-oriented control unit which pro-
vides access to data organized as an array of unrelated
blocks, an object store allows access to data via storage-
objects. A storage-object is a virtual entity that groups data

considered by a client to be related. It is similar to a byte-
stream file in a flat file-system with a conceptually unlim-
ited size. Space for a storage-object is allocated by the ob-
ject store control unit on demand; in other words, sparse
allocation is supported.
The collection of storage-objects, i.e., an object store,
forms what is essentially a flat file system. There is no
name space -- just a flat ID space. The object store pro-
vides security enforcement for access to the storage-objects
it contains but it does not provide security management,
i.e., it is not the role of the object store to determine who is
allowed to access an object -- it is the role of the object
store to enforce access rights determined by some external
security administrator.
While different proposals for object storage vary in the
details of the functions they provide, in almost all proposals
an object store provides (at least) the following basic func-
tionality:
• Create an object
• Delete an object
• Read from or write to a byte range within an object
• Format
• Get object storage info, ...

An object store provides a level of virtualization and ag-
gregation; more significantly it provides data path security.
Thus it is only natural for an object store to be in the data
path. A good place to realize an object store is on a control
unit.
An object store control unit is an element of a scalable,
networked storage infrastructure; each such control unit
may export multiple object stores, just as a traditional block
control unit exports multiple logical units.
As described above, an object store is a paradigm shift that
places more intelligence in the control unit and aims to
address issues of security, scalability and management.
An object store addresses security by securing all opera-
tions with a credential. Simply providing a credential on
each operation, even if the credential is not cryptographi-
cally protected, provides protection since it is not realisti-
cally possible to accidentally present a valid credential for
an operation. To provide security, however, some form of
cryptographic protection on the credential is required.
The goals of object store security are to provide increased
protection/security at the level of objects rather than whole
LUs, allow non-trusted hosts to sit in the SAN and allow
shared access to storage without giving hosts access to all
data on volume. In addition, since allocation metadata is
not directly processed by hosts, an additional level of pro-
tection is provided by the cooperation of:

 4

1. A security administrator -- a process that runs outside of
the object store and which is responsible for authenti-
cating users, authorizing their access and generating the
credential

2. An object store client which must request the credential
from the administrator and pass this credential to the
object store on all operations

3. The object store itself which is responsible for validat-
ing the credential presented by the client. The metadata
server in a SAN filesystem in a “natural” residence for a
security administration component.

Figure 2. Object Store Security

Object stores improve scalability by distributing space al-
location among storage controllers rather than doing this at
the level of a metadata server. This means that no extra
messages are required to coordinate allocation and there is
no false contention for allocation to different object stores.
In addition, since metadata recoverability is the storage
controller's responsibility, we can leverage the non-volatile
RAM typically found in a control unit.

4 ObS Based SAN File Systems
Using Object Storage to build a SAN filesystem enhances
considerably the filesystem scalability – and some file-
system builders have chosen Object Storage as their build-
ing block mainly because of the enhanced scalability ([4]
). Using object storage also considerably enhances security
in a shared environment.

Building a file system based on Object Storage however
raises a new set of challenges.
Object Storage is not built to support transactional opera-
tions. Even operations on a single object are not guaranteed
to be atomic and stable. A write operation on an object
might end with the object containing neither the old content
nor the new content. Object Storage makes only very lim-
ited guarantees regarding its operations. Even more so op-
erations that involve more than one object do not carry any
guarantees.
All modern file systems however provide strong guarantees
on some operations (e.g., operations on directories) and
recovery from many failures is very efficient.
When using conventional file system operations in con-
junction with an appropriate locking mechanism, users may
provide atomicity guarantees to application data. When
building an Object Store based file system we are faced
with the challenge of providing this type of mechanisms in
a form that keeps the scaling promise of Object Storage.
Most of the local and distributed filesystems built based on
block-storage have developed block based caching mecha-
nisms. Extending caching to support Object Storage and
make effective use of it is another challenge that has to be
taken by the Object Storage builder. In addition the secu-
rity mechanisms employed to insure data integrity on its
way from storage to clients could possibly be extended to
enable cooperative caching. For some classes of applica-
tions using the collective caching capability of a large
number of clients might result in high gains in perform-
ance.
With the extreme scaling enabled by Object Storage, active
file management will have to be distributed to a larger
number of machines. A file-system built on Object Storage
may be able to use distribution techniques that are more
efficient that the conventional clustering software and need
no or very little group communication support. A Server-
less structure will go a long way in improving file-system
scalability.

5 zFS: An ObS Based Distributed File System
zFS was designed to be a scalable distributed file system
by separating storage-space management from file man-
agement. Storage-space management is carried out using
ObSs, and file management is distributed over a set of
cooperative machines [8]. These machines are commodity,
off-the-shelf components such as PCs, running existing
operating systems and high speed networks. While the
current version of zFS does not address the issues of
deployment policies and security management (access
control), we believe that they can be distributed similarly to
the way simple file management is distrusted today, and we
plan to investigate these issue in the next version of zFS.
Files and directories in zFS are mapped to objects on ob-
ject stores. The ObS does not distinguish between a file and
a directory. Each file and directory in the file system is

 5

identified by a file pointer. The file pointer is a tuple <obs-
id,oid> where the obs-id identifies the object store where
the object resides and the oid identifies the object within
that object store.
Figure 3 shows the overall architecture of zFS.

Figure 3. Overall architecture of zFS2.

All metadata operations: create file, delete file, create di-
rectory etc., are distributed transactions spanning several
object stores. For example, create file may involve two
object stores. One which holds the directory in which the
file is created and other is the object store where the file
itself is created. To ensure consistency in the presence of
failures, such metadata operations are executed as distrib-
uted transaction by the Transaction Server (TSVR) compo-
nent.
All storage allocation and management in zFS is delegated
to the Object Store devices. When a file is created and writ-
ten to, the data blocks are sent to the ObS, which allocates
space on the physical disk and writes the data on the allo-
cated space. Usually, this is done asynchronously for per-
formance reasons.
The two most prominent features of zFS are its cooperative
cache and distributed transactions.

2 Although the figure shows TSVR, FMGR and LMGR running on

each host, this is an extreme case. The other extreme is where
non of the above runs on a host; only C-CACHE/FE must run
on a host for it to participate in zFS. For details see [8].

The cooperative cache of zFS (C-CACHE) integrates the
memory of all participating machines into one coherent
cache. Therefore, instead of going to the ObS for a block of
data which already resides in the memory of one or more of
the participating machines, the zFS cooperative cache re-
trieves the data block from the memory of another ma-
chine.
The zFS front-end (FE) runs on every node participating in
zFS. It presents the user with a standard file system API
and provides access to zFS files and directories.
To ensure data integrity, file systems use one form or an-
other of a locking mechanism. zFS use leases rather than
locks. The management of leases is split between two com-
ponents: the lease manager (LMGR) and the file manager
(FMGR). The lease manager acquires an ObS lease from
the ObS and grants exclusive file leases on whole files to
the file managers. The file manager, after getting the exclu-
sive file lease, manages the range leases which it grants the
front-ends. When the front-end reads or writes data blocks
from/to the ObS, it uses the range lease which is verified by
the ObS. The file managers monitors each read lease and
write lease it grants, and keeps track of where each file's
blocks and leases reside in an internal data structure. This
information is used by the cooperative caching algorithm as
described below. The file manager also handles lease con-
flicts and issues the downgrade/revoke commands accord-
ingly.

Figure 4. Read request with/without Cooperative Cache

Figure 4 shows the flow of control for a read operation in
case the requested data resides in the memory of another
host, (which invokes the cooperative cache mechanism),

 6

and in case the data is not cached in the local memory of
another host.
Each opened file in zFS is managed by a single file man-
ager assigned to it when the file is opened. The set of all
currently active file managers manage all opened zFS files.
Initially, no file has an associated file manager. The first
machine to perform an open() on file F creates a local
instance of the file manager for that file. Henceforth, and
until that file manager is shut down, each lease request for
any part of the file F, and from any participating machine is
handled by this file manager3.
Building zFS from the components described above is ex-
pected to achieve high performance and scalability due to
the following reasons:
• Separation of storage from file management

Caching and metadata management are done on a dif-
ferent machine from the one storing the data, the ObS.
Dynamic distribution of file and directory manage-
ment across multiple machines is done when files and
directory are opened. This offers superior perform-
ance and scalability compared to traditional server-
based file systems.

• Use of cooperative caching
Local cache miss, and load on ObS is reduced due to
the use of the collective memory of all participating
machines as a global cache.

• Lack of dedicated machines
Any machine mounting zFS can run the file manager
and lease manager. Hence, machines can automati-
cally get exclusive access to files and directories when
they are the sole users. Moreover, any machine in the
system can assume the responsibility of failed com-
ponents. For more details on the recovery mechanism
see [8].

• Use of Object Stores
The use of ObS relieves the file system from handling
metadata chores of allocating/removing and keeping
track of disk blocks, thus reducing the overhead of the
file system management.

6 Related Work
There are very few SAN file systems which use Object
Store and we give a short description of each here.
Lustre [4] is a SAN file-system based on of three compo-
nents: clients, Cluster control-system, and Storage Targets,
connected together by a SAN. The clients see a cluster file
system with standard POSIX semantics.
The Cluster Control Systems does not handle files data;
rather it manages name-space, metadata coherence, security

3 How other nodes find the corresponding file manager for F is

described in [8].

and cluster recovery while directing clients to perform file
I/O directly with storage targets.
Target stores are Object Stores which are programmable
allowing execution of modules downloaded to them.
Lustre is an open-source project which is currently under
development.

StorageTank [7], is a SAN file system built in IBM and
composed of clients, metadata servers and Storage. In the
first version it will use SAN connected conventional block
storage and will operate with trusted clients. Later versions
will use Object Stores to enable Storage Tank operation
with any client. Storage Tank is commercially available
under the name “SAN-FS”.

Clients and Object Stores are connected directly by a SAN,
allowing efficient movement of large amounts of data.
Metadata servers are connected to the other components by
an IP network. The roles of the metadata servers are to
maintain the file systems metadata state, and are responsi-
ble for all coherency and management choirs. Metadata
servers may be clustered for scalability and fault-tolerance.

7 Summary
SAN file systems based on bock devices poses security,
scalability and management challenges which can hardly be
answered by the existing technologies. The emerging Ob-
ject Store technology alleviates these problems and allows
large SAN file systems to share data among many clients in
a secure and manageable way. While Object Stores address
the current challenges they also introduce new ones, like
the need to find new ways to execute transactional opera-
tions. Object Stores also create the opportunity to use co-
operative caching between object stores and (with some
additional provisions) between clients and thus further im-
prove performance. These issues are subjects for our future
research.

8 Acknowledgements
We wish to thank Alain Azagury, Michael Factor, Kalman
Meth, Ohad Rodeh, Uri Schonfeld and Avi Weit from IBM
Research Labs in Haifa for their useful discussions on this
subject.

9 References
[1] IBM TotalStorage™ SAN File System – Draft

Protocol Specification.
[2] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick,

E. Oertli, D. Anderson, M. Burrows, T. Mann and C.
A. Thekkath, Block-Level Security for Network-
Attached Disks, Proceedings of FAST '03: @nd
USENIX Conference on File and Storage Technolo-
gies, San Francico, CA, USA, March 31-April 2, 2003

[3] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor,
N. Rinetzky, O. Rodeh, J. Satran, A. Tavori and L. Ye-
rushalmi, Toward an Object Store, proceeding 20th

 7

IEEE/11th NASA Goddard Conference on Mass Sto-
rage Systems and Technologies,April 2003, 165-176

[4] P. J. Braam, The Lustre Storage Architecture, Techni-
cal Report, Cluster File Systems, Inc., 2002,
http://www.lustre.org/docs/lustre.pdf

[5] G. A. Gibson, D. P. Nagle, K. Amiri, F. W. Chang, H.
Gobioff, E. Reidel, D. Rochberg and J. Zelenka, File-
systems for network-attached secure disks, 1997

[6] G. A. Gibson, D. P. Nagle, K. Amiri, F. W. Chang, E.
Feinberg, H. G. C. Lee, B. Ozceri, E. Reidel and D.
Rochberg, A case for network-attached secure disks.
Technical Report, CMU-CS-96-142, CMU 1996

[7] J. Menon, D. A. Pease, R. Rees, L. Duyanovich and B.
Hillsberg, IBM Storage Tank – A heterogenous scala-
ble SAN file system, IBM SYSTEMS JOURNAL, Vol.
42, No. 2, 2003

[8] O. Rodeh and A. Teperman. zFS – A Scalable Distri-
buted File System Using Object Disks, proceeding
20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies,April 2003, 207-
218

[9] J. Satran and M. Factor, Intelligent Storage – Object
Storage and Beyond, IPSI-2003

